Welcome to your CDP Water Security Questionnaire 2019

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

The Coca-Cola Company (NYSE: KO) is a total beverage company, offering over 500 brands in more than 200 countries and territories. In addition to the company’s Coca-Cola brands, our portfolio includes some of the world’s most valuable beverage brands, such as AdeS soy-based beverages, Ayataka green tea, Dasani waters, Del Valle juices and nectars, Fanta, Georgia coffee, Gold Peak teas and coffees, Honest Tea, innocent smoothies and juices, Minute Maid juices, Powerade sports drinks, Simply juices, smartwater, Sprite, vitaminwater and ZICO coconut water. We’re constantly transforming our portfolio, from reducing sugar in our drinks to bringing innovative new products to market. We’re also working to reduce our environmental impact by replenishing water and promoting recycling. With our bottling partners, we employ more than 700,000 people, bringing economic opportunity to local communities worldwide.

W-FB0.1a

(W-FB0.1a) Which activities in the food, beverage, and tobacco sector does your organization engage in?

- Processing/Manufacturing
- Distribution

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th></th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting year</td>
<td>January 1, 2018</td>
<td>December 31, 2018</td>
</tr>
</tbody>
</table>
W0.3

(W0.3) Select the countries/regions for which you will be supplying data.

Afghanistan
Albania
Algeria
Angola
Antigua and Barbuda
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia (Plurinational State of)
Bosnia and Herzegovina
Botswana
Brazil
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Canada
Central African Republic
Chad
Chile
China
China, Hong Kong Special Administrative Region
China, Macao Special Administrative Region
Colombia
Comoros
Congo
Costa Rica
Côte d'Ivoire
Croatia
Curaçao
Cyprus
Czechia
Democratic Republic of the Congo
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Ethiopia
Fiji
Finland
France
French Polynesia
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Grenada
Guatemala
Guinea
Guyana
Haiti
Honduras
Hungary
Iceland
India
Indonesia
Iran (Islamic Republic of)
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kuwait
Kyrgyzstan
Lao People's Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Libya
Lithuania
Luxembourg
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Norway
Oman
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Republic of Korea
Republic of Moldova
Réunion
Romania
Russian Federation
Rwanda
Saint Kitts and Nevis
Saint Lucia
Saint Vincent and the Grenadines
Samoa
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
Spain
Sri Lanka
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syrian Arab Republic
Taiwan, Greater China
Tajikistan
Thailand
The former Yugoslav Republic of Macedonia
Togo
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Uganda
Ukraine
United Arab Emirates
United Kingdom of Great Britain and Northern Ireland
United Republic of Tanzania
United States of America
United States Virgin Islands
Uruguay
Uzbekistan
Venezuela (Bolivarian Republic of)
Viet Nam
Yemen
Zambia
Zimbabwe

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.

USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

- Other, please specify
 - Includes independent franchise bottlers

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

Yes
W0.6a

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water use at sales and management offices or warehouse operations.</td>
<td>We are reporting data across our manufacturing business system. This data does not include water use at sales and management offices or warehouse operations as water use in such locations is small compared to manufacturing operations.</td>
</tr>
</tbody>
</table>

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Sufficient amounts of good quality freshwater available for use</th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vital</td>
<td>Important</td>
<td>Direct Use: As a beverage company, access to high-quality freshwater is vital to the long-term sustainability of our company. Water is the main ingredient in our beverages and essential to our operational processes, used in each step of production, including cleaning, heating and cooling. Indirect Use: Water is critical to ensuring a sustainable supply of the agricultural ingredients, packaging, and other key materials we use in our products. Through water footprinting studies across our value chain, we know that for some of our products, approximately 80 percent of the water footprint sits within our agricultural supply chain, for example, the farming, processing and production of sugar beet and sugar cane. Water is critical to our business, and therefore dependency on fresh water will remain the same. We also recognize</td>
</tr>
</tbody>
</table>
that access to safe water for drinking and sanitation is essential to the communities where we operate and across our value chain.

As we continue to grow our business, our reliance on freshwater will grow in the future. However, with continued efforts to reduce our water usage and increase water efficiency, we aim to decouple volume growth and mitigate growth as much as possible.

In indirect use, our plans to diversify our portfolio and increase volume in products such as tea, coffee, dairy and fruit will likely increase our reliance on freshwater in indirect usage, as these ingredients often have high water intensity and require freshwater. Through our sustainable agriculture program, we will continue to work with our agriculture supply chain to improve water management practices and improve water efficiency.

<table>
<thead>
<tr>
<th>Sufficient amounts of recycled, brackish and/or produced water available for use</th>
<th>Neutral</th>
<th>Neutral</th>
</tr>
</thead>
</table>

Direct primary use: Protecting the quality and availability of water is fundamental to our business. The use of re-used/recycled water is limited to non-product activities, such as cleaning-in-place processes and water treatment operations, and we directly source very little of brackish and/or produced water.

For recycling processes, many of our facilities across the system have implemented water recovery systems meeting the highest quality standards, and where applicable expanding the use of such water sources, helping minimize our environmental impacts.

Indirect primary use: Recycled, brackish or other types of water can be treated and used in our agricultural supply chains, such as to reduce freshwater withdrawals for irrigation. Continued access to sufficient amounts of such water is important to help to reduce freshwater extraction, reducing the impact on water tables, and improving local water availability. This is particularly critical in water stressed areas where we operate.

As we continue to grow our business, we expect that our requirements will grow; with water stress set to increase with potential climate change impacts, our reliance on recycled water
will grow in the future, to help mitigate our reliance on freshwater sources. Through continued efforts to reduce our water usage and increase water efficiency, we aim to mitigate risk as much as possible.

In indirect use, our plans to diversify our portfolio and increase volume in products such as tea, coffee, dairy and fruit will likely have an adverse effect on indirect water use, and again, our reliance on sufficient recycled water would likely increase, to mitigate or soften our reliance on the freshwater requirements for ingredient growing. Again, through our sustainable agriculture program, we will continue to work with our agriculture supply chain to improve water management practices and improve water efficiency.

W-FB1.1a

(W-FB1.1a) Which water-intensive agricultural commodities that your organization produces and/or sources are the most significant to your business by revenue? Select up to five.

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>% of revenue dependent on these agricultural commodities</th>
<th>Produced and/or sourced</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>21-40</td>
<td>Sourced</td>
<td>The Coca-Cola Company produces a wide range of non-alcoholic ready-to-drink beverages (NARTD) across the world. Our portfolio includes softdrinks, juices, coffees, teas, isotonic and sportsdrinks as well as waters. As we grow the business, the range of products we offer will also increase to reflect people’s evolving tastes and preferences. Since 2013, we include the 14 most important agricultural commodities into our sustainable agriculture commitments. These represent together more than 80% of our total annual procurement spend. Of these 14, natural sweeteners (high-fructose syrup from corn or wheat; sugar from beet or cane), and oranges (the largest volume among fruits by far) are irrigated crops which require significant amounts of water, and the reason for their selection here.</td>
</tr>
</tbody>
</table>
The Coca-Cola Company produces a wide range of non-alcoholic ready-to-drink beverages (NARTD) across the world. Our portfolio includes softdrinks, juices, coffees, teas, isotonic and sportsdrinks as well as waters. As we grow the business, the range of products we offer will also increase to reflect people’s evolving tastes and preferences.

Since 2013, we include the 14 most important agricultural commodities into our sustainable agriculture commitments. These represent together more than 80% of our total annual procurement spend. Of these 14, natural sweeteners (high-fructose syrup from corn or wheat; sugar from beet or cane), and oranges (the largest volume among fruits by far) are irrigated crops which require significant amounts of water, and the reason for their selection here.

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>Water withdrawals – total volumes</th>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>All facilities producing for the Coca-Cola system are required to report total water withdrawal volumes from daily site meter readings and report into our internal database on a monthly basis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Water withdrawals – volumes</td>
<td>100%</td>
<td>All facilities producing for the Coca-Cola system are required to report total water withdrawal from daily site meter readings and report into our internal database on a monthly basis. Based on this information, at the global level, geographical information on water-stress is overlayed to this data and total withdrawal from water-stressed areas is calculated on an annual basis. This data point is a key input to develop our strategy and prioritization of various geographic locations, and to monitor our performance against the context of water stress and water risk. Importantly, it is a key input to our global water risk assessments and for the purposes of assessing future enterprise risk.</td>
</tr>
<tr>
<td>from water stressed areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water withdrawals – volumes</td>
<td>100%</td>
<td>All facilities producing for the Coca-Cola system are required to report water withdrawal volumes by source, from daily site meter readings and report into our internal database on a monthly basis. This data point is a key input to monitor our performance against multiple metrics, including our total water use and water usage ratio. In addition, it is a key input for water risk assessments and for the purposes of assessing regulatory compliance.</td>
</tr>
<tr>
<td>by source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>100%</td>
<td>All facilities producing for the Coca-Cola system are required to report water withdrawal quality, from daily site test results and report into our internal database on a monthly basis. This data point is a key input to maintain consistent product quality, ensuring that all facilities produce according to internal quality standards. Additionally, it informs our local water strategy from the standpoint of providing insight into the current state of water supply.</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>100%</td>
<td>All facilities producing for the Coca-Cola system are required to report water discharge volumes, from daily site meter readings and report into our internal database on a monthly basis. This data point is a key input to monitor our performance against multiple metrics, including our total water use and water discharge. In addition, it is a key input for water risk assessments and for the purposes of assessing regulatory compliance, and managing waste water treatment at sites.</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100%</td>
<td>All facilities producing for the Coca-Cola system are required to report water discharge volumes by destination, from daily site meter readings and report into our internal database on a monthly basis. This is an additional datapoint for monitoring our performance against multiple metrics, including our total water use and water discharge. Importantly, it is a key data point to monitor the impact of our waste water discharge, and stay abreast of any potential water risk. It is a key input to our water risk assessments and for the purposes of assessing risks against regulatory compliance and community and stakeholder engagement.</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100%</td>
<td>All facilities producing for the Coca-Cola system are required to report water discharge volumes by treatment method, from daily site meter readings and report into our internal database on a monthly basis. This is an additional datapoint for monitoring our performance against multiple metrics, including our total water use and water discharge. It is also a key data point to understand the state and performance of waste water treatment within our system and to stay abreast of any potential risks or issues. It is a key input to our water risk assessments and for the purposes of assessing regulatory compliance, and managing waste water treatment at sites.</td>
</tr>
</tbody>
</table>
| Water discharge quality – by standard effluent parameters | 100% | All facilities producing for the Coca-Cola system are required to report water discharge quality by effluent parameters, from daily site tests and reports, and report into our internal database on a monthly basis.

All sites are required to comply with our strict global standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities.

This is an important input that consists of a robust list of effluent types listed in 3.1a, which allows facilities to monitor and report performance on complying with this standard.

In addition, it is a key input to our water risk assessments and for the purposes of assessing our performance in managing waste water and our impacts on local ecosystems. |
|---|---|---|
| Water discharge quality – temperature | 100% | All facilities producing for the Coca-Cola system are required to report water discharge quality by effluent parameters, from daily site tests and reports, and report into our internal database on a monthly basis.

All sites are required to comply with our strict global standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities.

This is an important input included in this global standard, which allows facilities to monitor and report performance on complying with our goal of only discharging water that supports aquatic life.

In addition, it is a key input to our water risk assessments and for the purposes of assessing our performance in managing waste water and our impacts on local ecosystems. |
<table>
<thead>
<tr>
<th>Category</th>
<th>Requirement Percentage</th>
<th>Details</th>
</tr>
</thead>
</table>
| Water consumption – total volume | 100% | All facilities producing for the Coca-Cola system are required to report total water consumption volumes calculated from daily site meter readings of withdrawal and discharge and report into our internal database on a monthly basis.
This data point is a key input to monitor our performance against multiple global metrics, including our total water consumption and water usage ratio. In addition, it is a key input for water risk assessments and for the purposes of assessing regulatory compliance. |
| Water recycled/reused | 100% | All facilities producing for the Coca-Cola system are required to report total water recycled/reused calculated or read from daily site meter readings and report into our internal database on a monthly basis.
This data point is an additional input to monitor our performance against some global metrics such as water consumption and water usage ratio.
In some cases, it provides an indication of the impact of technological investments or process improvements related to water usage in our operations. |
| The provision of fully-functioning, safely managed WASH services to all workers | 100% | The provision of fully-functioning and well-managed WASH services to all employees is a requirement, and is implemented and monitored through our global technical function, through global quality, safety and environmental standards and requirements.
Monitoring is conducted at a minimum annually as part of our internal checks on compliance to internal standards and requirements and is also part of our business and plant level water risk assessments, which are separate, and conducted annually. |

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?
Total withdrawals

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>298,797</td>
<td>Higher</td>
<td>Increases are a result of sales volume increase, and therefore increased production of goods. As our business continues to grow, we expect that this number will increase. However, we will strive to decouple the rate of increase from our volume growth through the pursuit of our targets such as Water Use Ratio, which is a measure of the amount of water used per liter of finished product produced. However, the following two factors must be considered for future outlook. As our business continues its evolution towards a total beverage company and diversify our portfolio, we expect continued growth in products such as tea, coffee and juices. Many of these products are slightly more water-intensive in our operations than some of our longer-standing portfolio. Additionally, as our business continues to engage in the space of plastics recycling and circular economy, it is expected that refillable packaging types, in which packages such as glass bottles or plastic bottles are collected, washed, and reused, will stay and even form a key part of our strategy in some markets. The usage of water associated with the washing of these packages is significant, and while we continue to optimize processes towards more water-efficient bottle washing technologies, there is a likelihood that, in the short term, there is an impact to our water withdrawals and discharge volumes for the two reasons stated above.</td>
</tr>
</tbody>
</table>

Total discharges

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>112,153</td>
<td>Higher</td>
<td>Increases are a result of sales volume increase, and therefore an increased production of goods. As our business continues to grow, we expect that this number will increase. However, we aim</td>
</tr>
</tbody>
</table>
to decouple the rate of increase from our volume growth through the pursuit of our targets such as Water Use Ratio, which is a measure of the amount of water used per liter of finished product produced.

However, the following two factors must be considered for future outlook.

As our business continues its evolution towards a total beverage company, and diversify our portfolio, we expect continued growth in products such as tea, coffee and juices. Many of these products are slightly more water-intensive in our operations than some of our longer-standing portfolio.

Additionally, as our business continues to engage in the space of plastics recycling and circular economy, it is expected that refillable packaging types, in which packages such as glass bottles or plastic bottles are collected, washed, and reused, will likely stay and even form a key part of our strategy in some markets.

The usage of water associated with the washing of these packages is significant, and while we continue to optimize processes towards more water-efficient bottle washing technologies, there is a likelihood that, in the short term, there is an impact to our water withdrawals and discharge volumes for the two reasons stated above.

<table>
<thead>
<tr>
<th>Total consumption</th>
<th>186,643</th>
<th>Higher</th>
</tr>
</thead>
</table>

Increases are a result of sales volume increase, and therefore increased production of goods.

As our business continues to grow, we expect that this number will increase. However, we aim to decouple the rate of increase from our volume growth through the pursuit of our targets such as Water Use Ratio, which is a measure of the amount of water used per liter of finished product produced.
W1.2d

(W1.2d) Provide the proportion of your total withdrawals sourced from water stressed areas.

<table>
<thead>
<tr>
<th>% withdrawn from stressed areas</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 10.1</td>
<td>Higher</td>
<td>WRI Aqueduct</td>
<td>We conducted a global enterprise water risk assessment, using WRI Aqueduct, covering all production facilities globally and 9 of our priority commodities and their sourcing regions. The work assesses baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation (WASH) challenges, for direct operations and key agricultural commodities. In this response, as we did last year, we focused only on facilities that are owned directly by The Coca-Cola Company, rather than by our bottling partners. Of these facilities, we have identified 19 to be located in areas of "Extremely High" baseline water stress, according to WRI analysis. Baseline water stress is an indicator of competition for water resources and is defined informally as the ratio of demand for water by human society divided by available water. It is also commonly known as the withdrawals-to-availability ratio. Baseline water stress measures the ratio of total annual water withdrawals, from industry, domestic and agricultural users, to average annual available renewable supplies. WRI used a long time series of supply (1950–2010) to reduce the effect of multi-year climate cycles and to allow us to ignore complexities of short-term water storage (e.g. dams, floodplains) for which global operational data is nonexistent. Baseline water stress thus measures chronic water stress rather than drought stress, and does not include the effects of deep groundwater, water governance or infrastructure in meeting industrial, domestic and agricultural demands for water.</td>
</tr>
</tbody>
</table>

Risk thresholds are below, and according to the scoring methodology employed by:
0-1 Low (<10%)
1-2 Low - Medium (10-20%)
2-3 Medium - High (20-40%)
3-4 High (40-80%)
4-5 Extremely High (>80%)

Here, we are reporting the % of water withdrawn by those plants identified as being located in areas of "extremely high" water stress, as a % of water withdrawn by only those production facilities owned by The Coca-Cola Company globally. The other volume responses in question 1 include all production facilities globally, including our bottling partners.

Last year, our analysis of facilities located in water-stressed areas relied on our previous global water risk assessment, conducted in 2015. The tool, while similar to WRI aqueduct in that it utilized similar data sources, was a proprietary internal tool.

We therefore found that there were some additional geographies such as South Africa or Southeast Asia, which are now included in this total and were not previously.

Between the change in data sources and the evolution of water-stress data over the past year, we see a slight increase in the % withdrawn from stressed areas.

W-FB1.2e

(W-FB1.2e) For each commodity reported in question W-FB1.1a, do you know the proportion that is produced/sourced from water stressed areas?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>The proportion of this commodity produced in</th>
<th>The proportion of this commodity sourced</th>
<th>Please explain</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Water Stressed Basins is Known</th>
<th>From Water Stressed Basins is Known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Not Applicable</td>
<td>Yes</td>
</tr>
<tr>
<td>Sugar</td>
<td>Not Applicable</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In 2018, we worked with WRI on a global Enterprise Water Risk Assessment, including our priority commodities and their sourcing regions. The work provides a holistic, global view of our exposure to systemic water related hazards, including baseline water stress, project water stress to 2030, water quality challenges and access to water and sanitation (WASH) challenges.

According to this study, approximately 34%, by weight, of the sourcing regions of this commodity are considered extremely high in baseline water stress.

Building on the water footprinting work we have done in the past, we are currently working to further understand our exposure. In addition, we are working closely with our procurement function, as well as through CDP Supply Chain Water to engage our suppliers and further develop our understanding of the specific supply chains relevant for our ingredients.

In 2018, we worked with WRI on a global Enterprise Water Risk Assessment, including our priority commodities and their sourcing regions. The work provides a holistic, global view of our exposure to systemic water related hazards, including baseline water stress, project water stress to 2030, water quality challenges and access to water and sanitation (WASH) challenges.

According to this study, approximately 7%, by weight of cane, and 0% by weight of beet, of their respective sourcing regions are considered extremely high in baseline water stress.

Building on our work with Bonsucro, SAI/FSA and on water footprinting, we are currently consolidating our learnings, updating where appropriate and planning our next steps in engaging our value chain.
We are working closely with our procurement function, as well as through CDP Supply Chain Water to engage our suppliers and further develop our understanding of the specific supply chains relevant for our ingredients.

<table>
<thead>
<tr>
<th>Other commodities from W-FB1.1a, please specify</th>
<th>Not applicable</th>
<th>Yes</th>
</tr>
</thead>
</table>

In 2018, we worked with WRI on a global Enterprise Water Risk Assessment, including our priority commodities and their sourcing regions. The work provides a holistic, global view of our exposure to systemic water related hazards, including baseline water stress, project water stress to 2030, water quality challenges and access to water and sanitation (WASH) challenges.

According to this study, approximately 3%, by weight of the sourcing regions of orange are considered extremely high in baseline water stress.

Building on our work with value chain partners and suppliers, we are currently consolidating our learnings, updating where appropriate and planning our next steps in engaging our value chain.

We are working closely with our procurement function, as well as through CDP Supply Chain Water to engage our suppliers to map the major growing regions of sugar that are used to supply our products.

Using WRI Aqueduct, we plan to overlay this information and calculate the percentage over the next year or 18 months.

W-FB1.2g

(W-FB1.2g) What proportion of the sourced agricultural commodities reported in W-FB1.1a originate from water stressed areas?
<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>% of total agricultural commodity sourced in water stressed areas</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Maize | 34 | In 2018, in partnership with DNV GL and Coca-Cola European Partners, we conducted an enterprise-level climate-related risk assessment, as well as identifying appropriate climate scenarios for our business to conduct further in-depth scenario analysis. The assessment was aligned with the recommendations of the Taskforce for Climate-related Financial Disclosures, and assessed Acute physical, Chronic physical and Transitional risks across a 10-year timescale, through a host of internal and external information and interviews, and identified both a BAU and 2 degree scenario for scenario analysis.

2 of the identified priority climate-related risks were related to agricultural sourcing of ingredients:
- Changes to weather and precipitation patterns limiting the availability of ingredients and raw materials
- Water scarcity disrupting sourcing and/or production

We understand there continues to be uncertainty around how climate change and other impacts would affect this number in the future. However, we understand that there is greater likelihood for this number to worsen, than to improve, if no action is taken.

We are currently engaging through our sustainable agriculture program to understand and take action towards mitigation, as well as further developing understanding of the impacts to our company. |
| Sugar | 5.5 | In 2018, in partnership with DNV GL and Coca-Cola European Partners, we conducted an enterprise-level climate-related risk assessment, as well as identifying appropriate climate scenarios for our business to conduct further in-depth scenario analysis. The assessment was aligned with the recommendations of the Taskforce for Climate-related Financial Disclosures, and assessed Acute physical, Chronic physical and Transitional risks across a 10-year timescale, through a host of internal and external information and interviews, and identified both a BAU and 2 degree scenario for scenario analysis. |
2 of the identified priority climate-related risks were related to agricultural sourcing of ingredients:
- Changes to weather and precipitation patterns limiting the availability of ingredients and raw materials
- Water scarcity disrupting sourcing and/or production

We understand there continues to be uncertainty around how climate change and other impacts would affect this number in the future. However, we understand that there is greater likelihood for this number to worsen, than to improve, if no action is taken.

We are currently engaging through our sustainable agriculture program to understand and take action towards mitigation, as well as further developing understanding of the impacts to our company.

<table>
<thead>
<tr>
<th>Other sourced commodities from W-FB1.2e, please specify Orange</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 2018, in partnership with DNV GL and Coca-Cola European Partners, we conducted an enterprise-level climate-related risk assessment, as well as identifying appropriate climate scenarios for our business to conduct further in-depth scenario analysis. The assessment was aligned with the recommendations of the Taskforce for Climate-related Financial Disclosures, and assessed Acute physical, Chronic physical and Transitional risks across a 10-year timescale, through a host of internal and external information and interviews, and identified both a BAU and 2 degree scenario for scenario analysis.</td>
<td></td>
</tr>
<tr>
<td>2 of the identified priority climate-related risks were related to agricultural sourcing of ingredients:</td>
<td></td>
</tr>
<tr>
<td>- Changes to weather and precipitation patterns limiting the availability of ingredients and raw materials</td>
<td></td>
</tr>
<tr>
<td>- Water scarcity disrupting sourcing and/or production</td>
<td></td>
</tr>
<tr>
<td>We understand there continues to be uncertainty around how climate change and other impacts would affect this number in the future. However, we understand that there is greater likelihood for this number to worsen, than to improve, if no action is taken.</td>
<td></td>
</tr>
</tbody>
</table>
We are currently engaging through our sustainable agriculture program to understand and take action towards mitigation, as well as further developing understanding of the impacts to our company.

W1.2h

(W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>12,986</td>
<td>Lower</td>
</tr>
<tr>
<td>Water Source</td>
<td>Relevance</td>
<td>Reliability</td>
<td>Change</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Relevant</td>
<td>2,738</td>
<td>About the same</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>135,217</td>
<td>About the same</td>
</tr>
</tbody>
</table>
and sustainability of the source water consistently.

From the source, the water would be pre-treated to clear quality standards, and used in the production of our products and in our production processes.

Our overall withdrawal has increased. As such, there has also been an increase in groundwater renewable sources. Given that these sources in general have more sustainable and more easily-managed supply than freshwater sources, we expect this volume to continue to increase.

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Relevance</th>
<th>Volume</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>147,856</td>
<td>Higher</td>
</tr>
</tbody>
</table>

In many cases, the local geographies in which we operate have third party sources, such as municipal water suppliers, supplying water.

In these cases, we often receive supply from third party sources, and further pre-treat the water if necessary.

We work closely with our third party sources as key stakeholders to ensure the water source is sustainable and meets required standards of quality.

Our overall withdrawal has increased. As such, there has also been
an increase in withdrawal from third party sources. Given that these sources in general have more sustainable and more easily-managed supply than freshwater sources, we expect this volume to continue to increase.

W1.2i

(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>14,841</td>
<td>Higher</td>
</tr>
</tbody>
</table>
As we continue to grow our business and volume, we expect this trend to continue.

<table>
<thead>
<tr>
<th>Water Source</th>
<th>Relevance</th>
<th>Volume</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brackish surface water/seawater</td>
<td>Not relevant</td>
<td></td>
<td>We do not discharge to seawater in any of the geographies in which we operate.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td></td>
<td>We do not discharge to groundwater sources in any of the geographies in which we operate.</td>
</tr>
</tbody>
</table>
| Third-party destinations | Relevant | 97,312 | Higher
| | | | In many geographies in which operate, there are third party operated destinations for effluent discharge, such as municipal facilities. Based on the legal requirements of each geography, we follow legal requirements, or our own internal requirements, if internal requirements are more stringent. Internal requirements, across our franchise bottling system and company-owned operations, are required to fully treat wastewater prior to discharge if there is no municipal system available or if such systems exist but only have partial treatment. In 2018, our system experienced volume growth. As a logical result, our effluent volumes increased, and this is reflected in the volume increase of discharges to third party destinations. As we continue to grow our business and volume, we expect this trend to continue. |

W1.2j

(W1.2j) What proportion of your total water use do you recycle or reuse?
The use of re-used/recycled water is limited to non-product activities, such as cleaning, heating, cooling or water treatment, and it is small as a percentage of total water withdrawn.

It is, however, an important contributor to reducing the overall water use, as it avoids the use of otherwise necessary industrial (non-product) water sources.

Many of our facilities across the system have already implemented water recovery systems meeting the highest quality standards, helping minimize our environmental impacts. However, the sheer volume of water for which recycled water could be used is minimal compared to the other uses for which recycled or reused water would not be applicable.

The trend remains roughly flat year on year, and in the context of our overall withdrawal volumes, remains very small. As we work to reduce our water use ratio further, we expect to achieve this not only by reducing our water use, but also by recycling more of the water that we use in production going forward.

While there is ongoing work across our global system to increase the use of recycled and reused water, the overall proportion of recycled and reused water is very small and therefore changes do not reflect materially in our overall numbers.

W-FB1.3

(W-FB1.3) Do you collect/calculate water intensity for each commodity reported in question W-FB1.1a?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>Water intensity information for this produced commodity is collected/calculated</th>
<th>Water intensity information for this sourced commodity is collected/calculated</th>
<th>Please explain</th>
</tr>
</thead>
</table>
Maize | Not applicable | Yes | Our studies have shown that around 80 percent of the total water footprint of our products comes from our agricultural supply chain. As a founding partner of the Water Footprint Network, we have worked with WWF, The Nature Conservancy and others to assess the water embedded in our products, packaging and ingredients so we can better understand the implications for our business, and work to reduce impacts.

In collaboration with The Nature Conservancy, we issued a report, Product Water Footprint Assessments: Practical Application in Corporate Water Stewardship.

Water footprint studies were conducted related to the following Coca-Cola products and ingredients:

- Coca-Cola® in a 0.5 liter PET bottle produced in the Netherlands;
- Beet sugar supplied to Coca-Cola Europe’s bottling plants; and
- Orange juice produced for the North American market.

We have also conducted studies comparing various sweetener types, including sugarcane, stevia, corn and sugar beets based on a similar methodology.

Sugar | Not applicable | Yes | Our studies have shown that around 80 percent of the total water footprint of our products comes from our agricultural ingredient supply chain. As a founding partner of the Water Footprint Network, we have worked with WWF, The Nature Conservancy and others to assess the water embedded in our products, packaging and ingredients so we can better understand the implications for our business, and work to reduce impacts.
In collaboration with The Nature Conservancy, we issued a report, Product Water Footprint Assessments: Practical Application in Corporate Water Stewardship.

Water footprint studies were conducted related to the following Coca-Cola products and ingredients:

Coca-Cola® in a 0.5 liter PET bottle produced in the Netherlands; Beet sugar supplied to Coca-Cola Europe’s bottling plants; and Orange juice produced for the North American market.

<table>
<thead>
<tr>
<th>Other commodities from W-FB1.1a, please specify</th>
<th>Not applicable</th>
<th>Yes</th>
</tr>
</thead>
</table>

Our studies have shown that around 80 percent of the total water footprint of our products comes from our agricultural ingredient supply chain. As a founding partner of the Water Footprint Network, we have worked with WWF, The Nature Conservancy and others to assess the water embedded in our products, packaging and ingredients so we can better understand the implications for our business, and work to reduce impacts.

In collaboration with The Nature Conservancy, we issued a report, Product Water Footprint Assessments: Practical Application in Corporate Water Stewardship.

Water footprint studies were conducted related to the following Coca-Cola products and ingredients:

Coca-Cola® in a 0.5 liter PET bottle produced in the Netherlands; Beet sugar supplied to Coca-Cola Europe’s bottling plants; and Orange juice produced for the North American market.
W-FB1.3b

(W-FB1.3b) Provide water intensity information for each of the agricultural commodities identified in W-FB1.3 that you source.

Agricultural commodities
Maize

Water intensity value (m3)
162

Numerator: Water aspect
Total water consumption

Denominator: Unit of production
Other, please specify
per 1000L of final product

Comparison with previous reporting year
This is our first year of measurement

Please explain
This number is calculated based on the specifications for an average coca cola regular product. Based on academic literature by A.Y. Hoekstra and P.W. Gerbens-Leenes, published by UNESCO-IHE, Institute for Water Education, in which the water footprint of maize from various growing regions in the US are cited, further calculations were made to estimate the total water consumption (water footprint) per liter of final product.

The Hoekstra study cites the weighted-average total water footprint for maize grown in the US to be 358 cubic meters per tonne.
Agricultural commodities
Sugar

Water intensity value (m3)
429

Numerator: Water aspect
Total water consumption

Denominator: Unit of production
Tons

Comparison with previous reporting year
This is our first year of measurement

Please explain
This number represents the average water intensity of sugar from sugar beet that is supplied to the Coca-Cola system's European bottling plants. It does not cover any other sugar or sweetener type, such as sugar from sugar canes.

All relevant activities that use water in the production of beet sugar were addressed in the accounting process, including:
- Cultivation of main raw materials (sugar beet)
- Transport of main raw materials to the sugar plant
- Sugar production
- Transport of sugar to bottling plants.

Raw beets are processed at sugar beet refining factories into several products, including beet pulp, molasses and sucrose.

Agricultural commodities
Other sourced commodities from W-FB1.3, please specify
Oranges

Water intensity value (m³)
0.53

Numerator: Water aspect
Total water consumption

Denominator: Unit of production
Other, please specify
per 59oz bottled product

Comparison with previous reporting year
This is our first year of measurement

Please explain
The calculations consider all water consumed in growing oranges and water consumed in processing and packaging the final orange juice products. The value was calculated for oranges used in a major US brand of orange juice, Simply Orange, and an average value was taken to account for oranges grown in Florida and the state of Sao Paulo, Brazil.

The Company's orange juice products have large and complex supply chains. For this reason, water stress indices were used to help focus the impacts assessment on priority watersheds. The results suggested that the green and blue water footprint impacts are potentially most significant for growing oranges in Florida. A more detailed analysis revealed that, in general, water use associated with citrus growing in Florida is managed through the Water Management Districts' strong environmental flow and water quality protection programs, though the water stress indices that were evaluated do not recognize these water resource management measures.

W1.4

(W1.4) Do you engage with your value chain on water-related issues?
Yes, our customers or other value chain partners
W1.4c

(W1.4c) What is your organization’s rationale and strategy for prioritizing engagements with customers or other partners in its value chain?

Customer relationships are critical to our business, as nearly all of our products reach consumers through our customer channels. Customers are interested in our water strategy to support their own sustainability goals, as well as to help drive sales by featuring our own work in water security. In many key markets, such as Europe, North America and others, we use our customer interactions to raise awareness on water. In 2018, we supported the Metro group water consumer activation for the second year. We have long-standing water collaborations with customers, for example with Hilton Group globally and with Europapark entertainment in Germany. We measure success through the results of such activations and resulting sales or revenue impact.

Additionally, through product water footprint exercises, we estimate that in some of our products, roughly 80% of our water use is in the growing of our agricultural ingredients, predominantly sugar and sweeteners, and fruit. We work with value chain partners and certification schemes (e.g. Bonsucro, SAI-FSA, Field to Market for US corn), and engage suppliers to get certified. All such standards include extensive water management requirements, from measuring abstractions, implementing efficient irrigation technologies and managing run-off.

We have an internal goal to sustainably source all (100%) of priority ingredients in this way by 2020.

For example, in India, a region in which water-stress is a key issue, we launched a mango sustainability program in collaboration with value chain partners, including one of our key suppliers, Foods & Inns Ltd (F&I). Farmers were provided tools, training and best practices in integrated pest management and crop handling. Today, 1,400 farmers have been certified, 40% of which use water conservation methods. And F&I can now supply 100% sustainably certified mangos, which go into products for Maaza in India and Minute Maid in the U.S. and Europe.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?

Classified - Confidential
No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

Yes, fines, enforcement orders or other penalties but none that are considered as significant

W2.2a

(W2.2a) Provide the total number and financial value of all water-related fines.

Row 1

<table>
<thead>
<tr>
<th>Total number of fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total value of fines</td>
</tr>
</tbody>
</table>

% of total facilities/operations associated

Number of fines compared to previous reporting year

About the same

Comment

The Coca-Cola Company and the Coca-Cola system operate many facilities globally. Many of these generate, treat and discharge waste water subject to government permits, licenses and other authorizations and applicable local law. For this question and W2.2, we are only responding as The Coca-Cola Company, and we do not include independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company manufacturing operations. Many of our largest independent franchise bottling partners will also be responding to this questionnaire, and from the perspective of their direct operations, will be in a position to respond appropriately to this section.
W3. Procedures

W-FB3.1

(W-FB3.1) How does your organization identify and classify potential water pollutants associated with its food, beverage, and tobacco sector activities that could have a detrimental impact on water ecosystems or human health?

The Coca-Cola Company has strict requirements for influent and effluent water quality at our facilities, as well as those at our bottling partners, and we require strict adherence to these standards, or local regulatory standards, whichever standard is more stringent.

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally with the potential to generate wastewater or affect stormwater.

The internal requirements cover 11 pollutants as mandatory in all facilities across the globe. If there are any legal requirements in the given geographical region to monitor additional pollutants not covered within these 11 pollutants, these would be added to the list of mandatory pollutants to monitor.

In addition, local business units are required to assess and monitor an additional list of 9 pollutants, if flagged relevant through a separate assessment conducted by the team considering local circumstances. This assessment is conducted through what internally is called a Source Vulnerability Assessment (SVA)/ Source Water Prevention Plan (SWPP). A key input to this is the Business Level Water Risk Assessment and waste water analysis whose aim is to identify vulnerabilities within each local context in which we operate, examining 72 risk factors, across 21 categories. Of the risk factors, at least 20 are directly or indirectly relevant to identifying and classifying potential water pollutants. The framework and approach is aligned with the Alliance for Water Stewardship as well.

The risk categories relevant to water quality / pollutants include:

- Source Water Availability (Quality)
- Waste Water Compliance
- Water Quality Compliance
- Water Quality Deterioration and Fluctuation
- Ineffective Treatment of Water
- Watershed Vulnerability
- Impact of Regulations on Watersheds and Water Quality

Acceptability limits are set for discharges directly to the environment following secondary treatment of the wastewater on-site. If we are discharging to a utility for further treatment, our facilities ensure that we also meet the pre-treatment requirements of such utilities, and the ultimate discharge of the final effluent from those utilities may have different discharge limits based on local regulations. Additionally, recommended methods listed below are required for our quarterly compliance checks performed by external labs. However, there may be other analytical methods that would be more appropriate at the facility level for more routine daily and weekly verification.

Below are a few of the pollutants whose monitoring is mandatory across all facilities:
- Fecal coliform, via stormwater or improper treatment of wastewater. Recommended method: 9221E.
- Ammonia, Phosphorus, via storm-water, or improper treatment of wastewater. Recommended methods: 4500 - NH3, 4500 - P
- Total Suspended Solids, via improper treatment of wastewater or stormwater. Recommended method: 2540D
- BOD5, via improper treatment of wastewater or stormwater. Recommended method: 5210B

These pollutants, for example, could impact nearby water bodies and watersheds, affecting entire local ecosystems and all water users. Some may also impact surface and ground water quality. Fertilizers and other pollutants could cause a potential change in pH, increase the amount of eutrophication in the water, or depending on the type, cause algae or other microorganisms to grow in excess. This could result in impacts on aquatic and natural life across ecosystems and enter watersheds, affecting local fauna as well as broader ecosystems and human health, as well as potentially disrupting various uses of water, including industrial uses, if untreated.

In our supply chain, our Supplier Guiding Principles (SGPs) and Sustainable Agriculture Guiding Principles (SAGPs) set out the requirements The Coca-Cola Company expects all of our suppliers to comply with, including requirements on water management (including pollutants), and minimizing water quality impacts from wastewater discharges and erosion, and nutrient/agrochemical runoff. We work together with and approve various certification schemes for sustainable ingredient sourcing, all of which include extensive water management requirements, from measuring abstractions, implementing water efficient irrigation technologies and managing run-off. SAGP compliance is monitored through these third-party organisations such as Bonsucro, SAI. The areas of our value chain most likely to be directly impacted by water pollutants is in our direct operations at our facilities, and upstream from our agricultural suppliers.
W-FB3.1a

(W-FB3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your food, beverage, and tobacco sector activities.

<table>
<thead>
<tr>
<th>Potential water pollutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food additives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity/value chain stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing – direct operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of water pollutant and potential impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food additives could cause a potential change in pH, increase the amount of eutrophication in the water, or depending on the type of food additive, cause algae or other microorganisms to grow in excess. This could result in impacts on aquatic and natural life across ecosystems and enter watersheds, affecting local fauna as well as broader ecosystems and human health, as well as potentially disrupting various uses of water, including industrial uses, if untreated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste water management</td>
</tr>
<tr>
<td>Follow regulation standards</td>
</tr>
</tbody>
</table>

Please explain

All facilities must treat waste water to meet the most stringent Company or local standards. Our global standard, in simple terms is for any effluent of a bottling facility to be at the level of quality that could support aquatic life. Details are provided below. Success is measured by compliance at all of our facilities globally, with the standards outlined below, through regular audits by our internal technical functions, and when any contravention is discovered, by addressing these immediately. Level of contamination of food additives are detectable through the list of contaminants monitored below.

Company guidelines for all bottling facilities apply to all Coca-Cola manufacturing operations that generate wastewaters (either process,
sanitary, cooling or stormwater). The objective of the requirements is to reduce the risk of adverse effects on the aquatic environment from discharged wastewater. The Company's policy is to comply with applicable law and regulation in all cases. Internal requirements apply to the extent that they are not contrary to or inconsistent with applicable law or regulation. If an internal requirement is more stringent than an applicable legal requirement, then the internal standard applies.

These internal standards entail the following required plans with detailed guidelines and standards under each item listed below:

- Preliminary assessment including - Drainage plan, Stream Separation (Before treatment), Pollution prevention and Minimization.
- Wastewater Treatment for - Process Wastewater, Sanitary Wastewater, Onsite Septic System, Stormwater, Non-contact cooling Water
- Discharge and Disposal of treated waters
- Landscape Irrigation greater than 20% and Land Application
- Preventive Management - including maintenance and inspection and training

The following parameters are measured for wastewater, and limits applied to each, to determine compliance with Company standards. These parameters are chosen on the basis of wastewater being able to support aquatic life and reduce impact to ecosystems. Audits are conducted regularly to ensure compliance.

- BOD
- Chlorine
- Color
- Fecal coliform
- Nitrogen
- Total suspended solids
- Temperature variation
- Ammonia, total
- Dissolved oxygen
- pH
- Phosphorus

Limits are set for each of these parameters, based on the allowable levels for supporting aquatic life. Thresholds are listed on the company website here:
https://www.coca-colacompany.com/stories/treating-and-recycling-wastewater

Potential water pollutant
Fertilizers

Activity/value chain stage
Agriculture – supply chain

Description of water pollutant and potential impacts
Fertilizer is used in our supply chain to grow agricultural commodities such as sugar beet and cane sugar, coffee, tea, juices, and others. Potential pollutants impacting water quality include ammonia and nitrates, two of the key pollutants outlined in The Coca-Cola Company's internal Requirements in 2015. As identified in The Coca-Cola Company Water footprint sustainability assessment (WFSA), it is possible that nitrate and ammonia from fertilizer could be found in the groundwater as a consequence of nitrate leaching from fields into the groundwater where crops are grown, in particular sugar beet. Fertilizer could also pollute via stormwater, or due to improper treatment of wastewater, impacting nearby water bodies and watersheds, affecting entire local ecosystems and all water users. Ammonia discharges from sugar plants may also impact surface and ground water quality.

Management procedures
- Soil conservation practices
- Crop management practices
- Sustainable irrigation and drainage management
- Fertilizer management
- Waste water management
- Follow regulation standards

Please explain
All facilities must treat waste water to meet the most stringent Company or local standards. Company guidelines for all bottling facilities apply to all Coca-Cola manufacturing operations that generate wastewaters (either process,
sanitary, cooling or stormwater). The objective of the requirements is to reduce the risk of adverse effects on the aquatic environment from discharged wastewater. The Company's policy is to comply with applicable law and regulation in all cases. Internal requirements apply to the extent that they are not contrary to or inconsistent with applicable law or regulation. If an internal requirement is more stringent than an applicable legal requirement, then the internal standard applies. We measure success by compliance to these standards at all of our sites globally.

These internal standards entail the following required plans with detailed guidelines and standards under each item listed below:
- Preliminary assessment including - Drainage plan, Stream Separation (Before treatment), Pollution prevention and Minimization.
- Wastewater Treatment for - Process Wastewater, Sanitary Wastewater, Onsite Septic System, Stormwater, Non-contact cooling Water
- Discharge and Disposal of treated waters
- Landscape Irrigation greater than 20% and Land Application
- Preventive Management - including maintenance and inspection and training

The following parameters are measured for wastewater, and limits applied to each, to determine compliance with Company standards. These parameters are chosen on the basis of wastewater being able to support aquatic life and reduce impact to ecosystems. Audits are conducted regularly to ensure compliance. Limits cannot be disclosed for confidentiality reasons.
- BOD
- Chlorine
- Color
- Fecal coliform
- Nitrogen
- Total suspended solids
- Temperature variation
- Ammonia, total
- Dissolved oxygen
- pH
- Phosphorus

Limits are set for each of these parameters, based on the level of each of these parameters allowable in order to avoid any damage to, and to be able to support aquatic life.
W3.3

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
Annually

How far into the future are risks considered?
>6 years

Type of tools and methods used
Tools on the market
Other

Tools and methods used
WRI Aqueduct
Internal company methods
Other, please specify
Business (Plant) Level Water Risk Assessment Tool and other internal tools
Comment

Enterprise-wide risk mapping exercises, in which we use the latest scientific information available (e.g. WRI Aqueduct as stated in this response) are conducted approximately every three years, or more frequently as appropriate. The results of these risk mapping exercises provide granular geographical & watershed-level detail on the potential levels of risk exposure across our business, from our direct operations, supply chains, and other parts of our value chain.

In parallel, Business (Plant) Level Water Risk Assessments are required for each facility. For those facilities deemed to be in high stress areas, based on our Enterprise-wide risk mapping exercise, an annual review is conducted, in which their Business (Plant) Level Water Risk Assessments are tracked, monitored and reviewed and revised according to their progress in implementing identified mitigation plans.

Supply chain

Coverage

Full

Risk assessment procedure

Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment

Annually

How far into the future are risks considered?

>6 years

Type of tools and methods used

Tools on the market

Other

Tools and methods used

WRI Aqueduct

Internal company methods

Other, please specify
Combination of Business (Plant) Level Water Risk Assessment Tool and Other internal tools

Comment
Enterprise-wide risk mapping exercises, in which we use the latest scientific information available (e.g. WRI Aqueduct as stated in this response) are conducted approximately every three years, or more frequently as appropriate. The results of these risk mapping exercises provide granular geographical & watershed-level detail on the potential levels of risk exposure across our business, from our direct operations, supply chains, and other parts of our value chain.

In parallel, Business (Plant) Level Risk Assessments are required for each facility, as well as risk assessments for priority sourcing commodities. For those facilities and commodity sourcing regions deemed to be in high stress areas based on our Enterprise-wide risk mapping exercise, an annual review is conducted, in which their Business (Plant) Level Water Risk Assessments are tracked, monitored and reviewed and revised according to their progress in implementing identified mitigation plans.

Other stages of the value chain

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
Annually

How far into the future are risks considered?
>6 years

Type of tools and methods used
Tools on the market
Other

Tools and methods used
WRI Aqueduct
Internal company methods
Other, please specify
Combination of Business (Plant) Level Water Risk Assessment Tool and Other internal tools

Comment
Enterprise-wide risk mapping exercises, in which we use the latest scientific information available (e.g. WRI Aqueduct as stated in this response) are conducted approximately every three years, or more frequently as appropriate. The results of these risk mapping exercises provide granular geographical & watershed-level detail on the potential levels of risk exposure across our business, from our direct operations, supply chains, and other parts of our value chain.

In parallel, Business (Plant) Level Risk Assessments are required for each facility, as well as risk assessments for priority sourcing commodities. For those facilities and commodity sourcing regions deemed to be in high stress areas based on our Enterprise-wide risk mapping exercise, an annual review is conducted, in which their Business (Plant) Level Water Risk Assessments are tracked, monitored and reviewed and revised according to their progress in implementing identified mitigation plans.

W3.3b
(W3.3b) Which of the following contextual issues are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Contextual Issue</th>
<th>Relevance & Inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Nearly all of our products contain water as the most critical main ingredient.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additionally, it is essential to growing the agricultural ingredients of our products as well.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The availability of water at a basin and catchment level, if impacted, will have a detrimental impact on our ability to produce goods, or could adversely impact production costs and impact profits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>We conduct global, plant-level water risk assessments to inform our global water strategy on an</td>
</tr>
</tbody>
</table>
approximate triennial frequency, across a 10-year risk horizon. The process involves a detailed, plant-level survey for each facility, extensive geospatial monitoring of various factors affecting water and a risk quantification model.

First, using WRI Aqueduct, we make a global assessment of all of our operational sites globally and the respective level of water stress or scarcity in the geography in which each site operates.

Additionally, using our Business (Plant) Level Water Risk Assessment Tool, we conduct a detailed site-level survey that covers 72 risk factors or potential vulnerabilities, spread across 21 risk categories for every site, which includes assessment of risk related to water availability, namely through the risk areas we term "Supply reliability" and "Economics." There are 20 risk factors considered, which are spread across the following risk categories: Infrastructure, Water Supply Policy, Episodic Events & Emergency Response, Legal Access to Water, Source Water Availability, and Water Cost.

Based on the findings, our internal global standards require that all production facilities form and train a comprehensive water resource management team, work with expert(s) to complete a source vulnerability assessment (SVA) that inventories these risks, prepare a source water protection plan (SWPP) with actions, roles, responsibilities and funding needs, and execute the plan.

<table>
<thead>
<tr>
<th>Water quality at a basin/catchment level</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nearly all of our products contain water as a main ingredient. Therefore, in order to ensure that products are safe to consume and of sufficient quality, incoming water quality is critical.</td>
</tr>
<tr>
<td></td>
<td>The quality of water at a basin and catchment level, if impacted, will have a detrimental impact on our ability to produce goods, or could adversely impact production costs or our ability to produce and impact either revenue, profits or both.</td>
</tr>
<tr>
<td></td>
<td>We conduct global, plant-level water risk assessments to inform our global water strategy on an approximate triennial frequency, across a 10-year risk horizon. The process involves a detailed, plant-level survey for each facility, extensive geospatial monitoring of various factors affecting water and a risk quantification model.</td>
</tr>
</tbody>
</table>
First, using WRI Aqueduct, we make a global assessment of all of our operational sites globally and the respective level of water stress or scarcity in the geography in which each site operates.

We then conduct a detailed site-level survey using the Business (Plant) Level Water Risk Assessment Tool that covers 72 risk factors or potential vulnerabilities, spread across 21 risk categories for every site, which includes assessment of risk related to water quality, namely through the risk area of "Incoming Water Quality." There are seven relevant risk factors assessed, which are spread between the risk categories of Water Quality Deterioration & Fluctuations, and Ineffective Treatment.

Based on the findings, our internal global standards require that all production facilities form and train a comprehensive water resource management team, work with expert(s) to complete a source vulnerability assessment (SVA) that inventories these risks, prepare a source water protection plan (SWPP) with actions, roles, responsibilities and funding needs, and execute the plan.

Stakeholder conflicts concerning water resources at a basin/catchment level

Relevant, always included

The Coca-Cola Company’s water leadership was born in India more than a decade ago, following a conflict between our business and the local community over the use of local water resources. While we believed we had a solid record of efficient and responsible water use, we quickly learned what is now well-accepted: that the availability of freshwater can pose risks to a company’s license to operate. It also offers opportunities to make a positive impact on lives and livelihoods around the globe.

We now conduct global, plant-level water risk assessments to inform our global water strategy on an approximate triennial frequency, across a 10-year risk horizon.

First, using WRI Aqueduct, we make a global assessment of all of our operational sites globally and the
respective level of water stress or scarcity in the geography in which each site operates.

We then conduct a detailed site-level survey using the Business (Plant) Level Water Risk Assessment Tool that covers 72 risk factors or potential vulnerabilities, spread across 21 risk categories for every site, which includes assessment of risk related to stakeholder conflicts concerning water resources. These are assessed through the risk areas we term "Social," "Local Watershed," and "Compliance." There are 35 risk factors considered, which are spread across the following risk categories: Community Conflict, Community Projects, Access to Safe Water, Government Interactions, Media Scrutiny, Business Landscape / Competitive Context, Watershed Vulnerability, Regulations, Waste Water Compliance, Water Quality Compliance.

Based on the findings, our internal global standards require that all production facilities form and train a comprehensive water resource management team, work with expert(s) to complete a source vulnerability assessment (SVA) that inventories these risks, prepare a source water protection plan (SWPP) with actions, roles, responsibilities and funding needs, and execute the plan.

<table>
<thead>
<tr>
<th>Implications of water on your key commodities/raw materials</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water is critical to our business. Not only do nearly all of our products contain water as the most critical main ingredient, but water is also essential to growing the agricultural ingredients and producing the packaging and other essential materials that are critical in producing and delivering our products to market.</td>
<td></td>
</tr>
</tbody>
</table>

Adverse impacts on water availability or quality in our supply chains could have significant implications in our capability to produce or the cost of our product and therefore the profitability and growth potential of the business.

We assess the implications of water to our key commodities and raw materials in a number of ways.

First, we engage with suppliers through our supplier engagement program through our procurement function, in which suppliers are assessed through scorecards, which score suppliers on areas which
include quality, safety, environmental management and sustainability.

Secondly, through our sustainable agriculture program, we engage agricultural suppliers to comply with our sustainable agriculture guiding principles, which explicitly require the sustainable, long-term management of water resources. Suppliers are audited on their compliance with these principles on a regular basis.

Additionally, through our partnerships with key certification platforms and agricultural sustainability initiatives (such as Bonsucro for cane sugar, SAI-FSA for sugarbeet and fruit, and Field to Market for corn in the USA as an example), we continue to assess and mitigate these risks using internal tools.

Finally, we have conducted work on the water footprint of some of our key products in the past, through which we have begun quantifying the water impact of our product beyond our four walls, from crop to can. These studies indicate that, for some of our key products, approximately 80% of our water usage sits within our agricultural supply chain. We will build on this work to build an in-depth strategy for mitigation.

<table>
<thead>
<tr>
<th>Water-related regulatory frameworks</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>In all geographies and areas in which we operate, the use of water is impacted by local regulations and regulatory frameworks. Without effective governance and regulations, sustainable water use in some cases could come under risk. Additionally, effective regulation could unlock many opportunities and benefits for both the local communities and business, potentially impacting community well-being, business productivity and levels of cost and capacity.</td>
<td></td>
</tr>
<tr>
<td>We conduct global, plant-level water risk assessments to inform our global water strategy on an approximate triennial frequency, across a 10-year risk horizon. The process involves a detailed, plant-level survey for each facility, extensive geospatial monitoring of various factors affecting water and a risk quantification model.</td>
<td></td>
</tr>
<tr>
<td>First, using WRI Aqueduct, we make a global assessment of all of our operational sites globally and the respective level of water stress or scarcity in the geography in which each site operates.</td>
<td></td>
</tr>
</tbody>
</table>
We then conduct a detailed site-level survey using a Business (Plant) Level Water Risk Assessment Tool that covers 72 risk factors or potential vulnerabilities, spread across 21 risk categories for every site, including assessment of risk related to water-related regulatory frameworks. Regulation is a critical topic, for which 20 relevant risk factors are considered across the following risk categories: Infrastructure, Water Supply Policy, Water Efficiency Practices, Waste Water Compliance, Water Quality Compliance, Water Cost, Regulations, Access to Safe Water and Government Interactions.

Based on the findings, our internal global standards require that all production facilities form and train a comprehensive water resource management team, work with expert(s) to complete a source vulnerability assessment (SVA) that inventories these risks, prepare a source water protection plan (SWPP) with actions, roles, responsibilities and funding needs, and execute the plan.

<table>
<thead>
<tr>
<th>Status of ecosystems and habitats</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>The status of ecosystems and habitats in our areas of operation or in our supply chain are essential in ensuring the long-term sustainability and availability of water. If these are impacted or degrade, this could lead to the degradation of sustainable and quality water availability, potentially impacting community well-being, business productivity and levels of cost and ability to produce.</td>
<td></td>
</tr>
</tbody>
</table>

We conduct global, plant-level water risk assessments to inform our global water strategy on an approximate triennial frequency, across a 10-year risk horizon. The process involves a detailed, plant-level survey for each facility, extensive geospatial monitoring of various factors affecting water and a risk quantification model.

First, using WRI Aqueduct, we make a global assessment of all of our operational sites globally and the respective level of water stress or scarcity in the geography in which each site operates.

We then conduct a detailed site-level survey using a Business (Plant) Level Water Risk Assessment Tool that covers 72 risk factors or potential vulnerabilities, spread across 21 risk categories for every site, including assessment of risk related to status of ecosystems and habitats. There are 5 relevant risk factors that considered on for this issue across the following risk categories: Watershed Vulnerability,
<table>
<thead>
<tr>
<th>Water Quality Deterioration & Fluctuations, and Community Conflict.</th>
<th>Based on the findings, our internal global standards require that all production facilities form and train a comprehensive water resource management team, work with expert(s) to complete a source vulnerability assessment (SVA) that inventories these risks, prepare a source water protection plan (SWPP) with actions, roles, responsibilities and funding needs, and execute the plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to fully-functioning, safely managed WASH services for all employees</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Other contextual issues, please specify</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>
At the time, the goal was a leap of faith. But we met and exceeded it, and other companies have followed suit. We continue to meet and exceed the target each year since 2015 when we first met the target. However, we recognize that it is important to continue performing against the targets that we set for ourselves, as this continues to form part of our license to operate.

W3.3c

W3.3c

(W3.3c) Which of the following stakeholders are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Customers | Relevant, always included | We are a business-to-business company. Our finished products are sold to customers, which can be very large to very small retailers (grocery stores), restaurants, hotels, catering companies, leisure and entertainment parks etc. As a result, customers’ voices and requirements are vital in considering our water-related policies, risks and strategies. The following are examples of the dimensions in how we include our customers in water-related risk assessments and relevant examples:
- As significant water users in their own operations: for example, Hotels and catering businesses tend to use a lot of water and we have engaged with a number of our leading customers (e.g. Hilton Group) in the US and Europe to help them understand their water risks, share our approaches and advise on water efficiency.
- As major indirect users of water through their supply chains: agricultural produce is a major water users for many of our retail customers, e.g. in their fresh produce supply chain. We seek to engage customers on sustainable agriculture where we have common supply chains, for example on fruit (for fresh and juice). For example, in Spain (Huelva region), we helped bring together retail customers like Migros and M&S to work with us and our suppliers on water-efficient (straw)berry farming.
- As major touchpoint for awareness raising on water with consumers: Retailers are the touchpoint of our brands |
with the consumers. We engage customers to partner on the Point of Sales to raise awareness on water with our consumers. For example, we supported Metro Group in a multi-country consumer activation on world water day to raise awareness and funds for water projects across Europe.

Employees

Relevant, always included

Employee engagement is critical for the success of our business and the achievement of water goals. We engage our employees across the system to embed our business objectives in the day-to-day way of doing business, especially as we have such a vast operational footprint. Also, employee engagement surveys show how important our work on sustainability, including water, is for employee loyalty and engagement. We inform and engage employees on water in different ways, through our intranet (Connect) or website (Journey), internal newsletters (company and bottlers), specific communications on major water events like World Water Day, Global Water Summit and Stockholm Water Week. Depending on what works best on local level, we also take employees on community days to water projects and field visits to support our partners and raise awareness. Environmental awards for our bottlers include water performance and reward best in class and best performer bottlers. As a food & beverage business, ensuring advanced WASH practices in all Coca-Cola system facilities is critical for product integrity and we monitor for 100% compliance with our internal operating requirements, which includes a full compliance requirement on basic food-safety standards such as PD ISO/TS 22002-1, Prerequisite Programs on Food Safety, and FSSC 22000.

Investors

Relevant, always included

Our investors are important to us and many of our largest institutional investors have had a long engagement with our company. We take their views seriously and have engaged for many years directly on water and other sustainability issues. At least once a year, we organize an investor engagement day, where we offer investors an opportunity to talk to us about sustainability and water. In addition, we participate in investor roundtables on water whenever possible, together with other water users, and we disclose our water stewardship work through the annual CDP Water questionnaire.

Local communities

Relevant, always included

Our local communities play a critical role in our social license to operate. Their voice could directly affect our reputation as a business and impact our license to operate. They are a critical element of our water risk assessments, both on enterprise level and on local facility level. Our current and forecasted water use are assessed via a rights-based approach which assesses social considerations of water and sanitation access. Such
assessments are required to be maintained and updated on five-year intervals, or sooner, as conditions warrant. For example, our global water risk assessment tool (Nautilus, based on the WRI aqueduct tool) takes globally available data and validates this on local level with the help of our Business Unit experts and bottlers, also including community specific risks like access to water and sanitation. On facility level, every bottling plant has to conduct regular Source Vulnerability Assessments (SVA) that take into account very local risk factors, including community and social issues but also potential competition for water with other users and requires to engage with the local communities to address these risks through a local Source Water Protection Plan (SWPP).

<table>
<thead>
<tr>
<th>NGOs</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil society/NGOs are a vital part of communities. Many NGOs are our partners in water risk mitigation activities and sharing the value of water resources with communities. They provide a vital input to our policy by reflecting the voice of communities and regulators and helping us establish and maintain strong relationships with those groups. For example, in our replenish work, we partner with leading conservation organisations such as WWF and The Nature Conservancy (TNC) in many parts of the world (Latin/Central/North America, Europe, China) on watershed protection and resource conservation. When we work on access to water and sanitation, we work with leading WASH NGOs like WSUP, Wateraid and local community-led NGOs to design and implement the most relevant solutions in the communities. We also partner with NGOs on policy level, for example in the 2030 Water Resource Group and national stakeholder roundtables and we also seek to integrate NGO's in industry platforms for sustainable agriculture, for example Field To Market, Bonsucro, SAI Platform etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other water users at a basin/catchment level</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other water users are also critical stakeholders in that we share a common source of water for our respective end uses. As users of a common source, it is critical that we work together to protect the sustainability of this source. Through our source water protection program, including the local Source Vulnerability Assessments, we evaluate all water users and vulnerabilities at each of our facilities. We seek to engage other users, communities and regulators to raise awareness of the local catchment level water issues and work on solutions together. Many water users are engaged in source water protection efforts, for example through the many water funds evolving in Latin-America. We also support local efforts to galvanise action for water savings, for example in the greater Atlanta region, we</td>
<td></td>
</tr>
</tbody>
</table>

Classified - Confidential
The Coca-Cola Company
CDP Water Security Questionnaire 2019 Tuesday, July 30, 2019

<table>
<thead>
<tr>
<th>Regulators</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good water governance is critical to equitable and sustainable water use in the catchments where we operate. Regulators (local, regional and national) are critical to set the right policy frameworks for all water users. On local level, our bottling and distribution facilities are engaged with local regulators, often sharing insights and knowledge on water management with the local water utilities or service providers. Through our source water protection program, we evaluate all government policy, regulations and plans leading to active engagement at a local and national level. In Europe, water policy frameworks are led by the European Union directives (e.g., EU Water Framework Directive) and we engage with other partners, NGOs and users to support a sustainable and robust water resource management in the region. In addition, through international platforms such as the 2030 Water Resource Group or the CEO Water Mandate, we work to support good national water governance in a transparent and multi-stakeholder approach and to raise awareness about its importance and best practices on global level.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>River basin management authorities</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Governance and river basin management is critical to sustainable and high quality water across river basins, on which not only many of our bottling facilities rely, but also the surrounding communities and stakeholders. Our source water protection program requires that each facility, as part of their source water vulnerability assessment, evaluate public sector local and regional water resource master and long-term planning. Such assessments are required to be maintained and updated on five-year intervals, or sooner, as conditions warrant. Where relevant (e.g., due to increased risk) our local teams engage with river basin management authorities on collective and preventive solutions. For example, in Brazil, we are engaged in a number of water funds that operate on a catchment level. On the Danube river basin in Europe, we work jointly with WWF and ICPDR, the International Commission for the Protection of the Danube river on a multi-year program of protection and restoring wetlands, in line with river basin management plans. In China, we work with WWF and other partners, including the river basin management authorities, on various watershed protection projects and engage to strengthen underlying water governance in the catchment.</td>
</tr>
<tr>
<td>Statutory special interest groups at a local level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Statutory special interest groups, in local areas where they exist, are critical stakeholders in enabling us to understand the local nuances of water, as well as the needs of the surrounding communities.</td>
<td></td>
</tr>
</tbody>
</table>

Through the Sourcewater vulnerability assessments (SVAs) and site-level risk assessments, consideration is given to statutory special interest groups.

Our current and forecasted water use are assessed via a rights-based approach that assesses social considerations of water and sanitation access. Such assessments are required to be maintained and updated on five-year intervals, or sooner, as conditions warrant. Communities and water rights holders are the key audience of our local facilities water management, which can include, for example, local farmers, neighboring community settlements or water sports and fishing communities. With more than 900 local operations worldwide, these engagements and specific needs can be very diverse. For example, in our Capetown water plan, we included the neighboring communities in our water management plan, including working to understand and address their water access and sanitation needs. In our UK-based sites, e.g. in the London area, we worked to engage the local fishermen and rivertrust communities to understand how best to enhance the nearby watercourse to also support fishing opportunities. In most of the watershed projects we support as part of our replenish work across the world, we aim to improve the benefits of the water interventions not only for nature, but also for communities, for example by enhancing opportunities for leisure, tourism, commerce or food production.

<table>
<thead>
<tr>
<th>Suppliers</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppliers are essential in enabling our business to produce to demand, as well as to understand the impact that our business has through the value chain. We have worked with our suppliers to understand our water footprint across the value chain, with estimates indicating that the vast majority (upwards of 80%) of the water footprint of some of our products reside with the growing and production of our key agricultural ingredients, such as sugar and fruit.</td>
<td></td>
</tr>
</tbody>
</table>

As part of our 100% sustainable sourcing goal for 2020, we are progressing with agriculture suppliers in data collection, goal-setting and reporting. Our Sustainable Agriculture Guiding Principles include water with criteria focused on efficiency, pollution and source sustainability. A number of our key commodities are largely rainfed, for example beet sugar, tea and coffee. However, others, such as Oranges, apple, Mango and sugar cane often are irrigated. We work with our suppliers to raise awareness of water risks and best practice water management.
and irrigation techniques. We also work to identify specific projects in sourcing areas with high water risk to improve water management and demonstrate the benefits of high-efficiency irrigation techniques to farmers. For example, we worked with our smoothie business innocent and the supplier SVZ to advance water efficient berry farming in Spain's Huelva region. We also worked with our Spanish Fanta business and the supplier Frusa to improve water efficiency in orange farming in the Valencia region. In India, our business runs a series of sustainable agroculture projects with its cane sugar suppliers and smallholder farmers to improve access to and management of water in Uttar Pradesh.

| Water utilities at a local level | Relevant, always included | About half of our plants receive water from local municipal suppliers. As such, these local water utilities are key stakeholders, and at the local level across our global system, our operational entities engage with them on an ongoing basis.

Our source water protection program requires that each facility, as part of their source water vulnerability assessment, evaluate public sector local and regional water resource master and long-term planning. Such assessments are required to be maintained and updated on five-year intervals, or sooner, as conditions warrant. In several regions, for example in sub-saharan Africa, the local water utilities have major capability challenges, especially around leakage management, non-revenue water, waste water treatment etc. Our bottlers (e.g. CCBA, CCHBC) work with the local regulators and utilities to share knowledge and best practice. In Capetown, our local bottler Coca-Cola Peninsula Beverages worked actively with the local utility on developing an alternative water supply strategy and to reduce supply pressure on the municipal provider.

| Other stakeholder, please specify | Relevant, always included | Our source water protection program requires that each facility, as part of their source water vulnerability assessment, evaluate public sector local and regional water resource master and long-term planning. Such assessments are required to be maintained and updated on five-year intervals, or sooner, as conditions warrant. As an when additional stakeholders are identified as relevant at a local level, they are always included in the assessment of risk and opportunity for the relevant plant or local entity. |
W3.3d

(W3.3d) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

We have a 4-step process for identifying, assessing and responding to water-related risk. The first step includes a global enterprise water risk assessment, using WRI Aqueduct, covering all production facilities globally and 9 of our priority commodities and their sourcing regions. The work assesses baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation (WASH) challenges, for direct operations and key agricultural commodities.

The second step is to overlay relevant data points such as population data and urbanization rates and to prioritize our work. Our latest such work is the basis of our disclosure in this response, for facilities and ingredient sourcing regions located in areas of water stress. It is repeated on a triennial basis, or as conditions warrant.

In the third step, collect plant-level feedback of potential risks in a Business Level Water Risk Assessment, through a detailed survey that covers 72 risk factors or potential vulnerabilities, spread across 21 risk categories, completed by our local teams in each geography. The 21 risk categories split into the following seven areas as below:

3. Compliance - Waste Water Compliance, Water Quality Compliance
4. Economics - Waste Water Cost, Water Cost
5. Water quality - Water Quality Deterioration & Flutuations, Ineffective Treatment
6. Local watershed - Business Landscape / Competitive Context, Watershed Vulnerability, Regulations
7. Social - Community Conflict, Community Projects, Access to Safe Water (i.e. WASH), Government Interactions, Media Scrutiny

In step 4, we apply our global standards on water resource sustainability, which, based on findings from the assessments above, require all production facilities to: 1. Form a water resource management team; 2. With expert(s), complete a source vulnerability assessment (SVA) to inventory all identified risks; 3. Prepare a source water protection plan (SWPP) with actions, roles, responsibilities and funding needs; 4. Implement the SWPP; and 5. Update the SWPP as conditions warrant. We also ensure that the process is aligned with the AWS approach of looking at watershed and operational risk and collaborating with local regulatory and stakeholder bodies.
As an example of how we have responded strategically to identified risks, in 2015, we were able to achieve our Replenish target early and have continued to improve on that number*. In 2018, we replenished 257 billion liters of water, which amounts to 155% of what we used in our finished beverages and their production. Since the start of this program, we have replenished more than 1 trillion liters of water, invested more than US$ 124 million in WASH projects and helped 786,452 people measurably transform their lives through improved water access.

(*As estimated working with our many external partners and using generally accepted, independently peer-reviewed scientific and technical methods. Finished beverages based on global sales volume.)

In our value chain, we assess the implications of water risk to our key commodities and raw materials in a number of ways.

First, based on the enterprise level risk assessment for the key sourcing regions of 9 global priority commodities referenced above, we prioritise suppliers on water risk and engage with them through a supplier engagement program of our procurement function. Our aim will be to evaluate the risk data based on their local knowledge to understand actual vulnerabilities and root causes, where possible.

Secondly, through our sustainable agriculture program, we engage agricultural suppliers to comply with our Sustainable Agriculture Guiding Principles, which explicitly requires the sustainable, long-term management of water resources. Agreement to fulfill these Sustainable Agriculture Guiding Principles is a prerequisite to supplying to the Coca-Cola system, and suppliers are audited on their compliance with these principles on a regular basis. Additionally, through our partnerships with key certification platforms and agricultural sustainability initiatives (such as Bonsucro for cane sugar, SAI-FSA for sugarbeet and fruit, and Field to Market for corn in the USA as an example), we continue to assess and mitigate these risks.

Finally, we have conducted work on the water footprint of some of our key products in the past, through which we have begun quantifying the water impact of our product across the value chain, from "crop to can." These studies indicate that, for some of our key products, approximately 80% of our water usage sits within our agricultural supply chain. We plan to continue building on this work and establish a more in-depth understanding and strategy for mitigation.
W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

There are 72 risk factors in our Business Level Water Risk Assessment, and these are accounted for on a points-based scale. Each of the 72 risks is assessed on criteria that are relevant to the specific risk factor and are assessed at the local level, on a scale that is locally relevant. An assessment is made for both the likelihood, as well as the consequence of the risk event transpiring, and the results are aggregated to determine a risk score for each factor.

Each risk factor is given a score of 1 to 5 for the consequence to the business of the event transpiring, with 5 being the most severe, including such consequences (depending on the specific risk factor) as having critical implication for the company’s operations or diverting the business resources to the issue on a full-time basis. On the opposite end of the spectrum, a score of 1 is given to risks that would result in minor losses or impacts, for the specific risk factor in question.

Each risk factor is also given a score of 1 to 5 for the likelihood of the risk transpiring, with 5 being the highest, at greater than 90% likelihood, or the risk event either being expected to transpire or already transpiring. A score of 4 is 71-90% of likelihood, 3 is 41 - 70% likelihood, and 2 is 10 - 40%, with 1 being the least likely at less than 10% likely that it will occur, under exceptional and unusual circumstances or extreme conditions.

The scores for consequence and likelihood are then multiplied together, and risks with a score of 15 - 25 are categorized in the highest priority, 8 - 14 high priority, 4 - 7 moderate, and 1 - 3 low.

Depending on the risk factor (of which there are 72), there are a number of measures through which business consequence and likelihood are measured:
- Disruption of production, ranging from potential plant closure to an inability to operate at full capacity
- Increased costs resulting in lost profit or lost production and therefore lost revenue
- Damage to corporate or brand reputation leading to loss of revenue

We define ‘substantive impact’ as an event that will probably occur or we expect to occur within a three year horizon and has the potential to result in a materially adversely affect our business, financial condition, results of our operations (as defined in our 2018 10K pages 9-20) and result in catastrophic loss to the environment or community services and well-being of the communities we serve.

Based on these assessments, we aim to mitigate risks by introducing actions which, in some cases, could bring forth significant changes in strategic areas of importance to our company. The effectiveness of these mitigation plans, beyond repeated risk assessments, are tracked through key water-related KBI's introduced across the Coca-Cola system:
- Manufacturing facility performance (efficiency, reuse, stormwater management, and wastewater treatment). (KBI: liters of product per liter of water used per facility (target -25% between 2010 and 2020) and number of facilities in compliance with our waste water and stormwater management requirements)
- Replenishment of product water use: By 2020, safely return to communities and nature an amount of water equal to what we use in our finished beverages and their production. (KBI: liters of annual sales volume versus liters of water benefits generated)

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 19</td>
<td>1-25</td>
<td></td>
</tr>
</tbody>
</table>

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive impact on your business, and what is the potential business impact associated with those facilities?
<table>
<thead>
<tr>
<th>Country/Region</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>River basin</td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>Various basins and aquifers across the country.</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>9</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>1-25</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

| **Comment** | |

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>River basin</td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>Various</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>3</td>
</tr>
</tbody>
</table>
% company-wide facilities this represents
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>% company’s total global revenue that could be affected</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>Various</td>
<td>1</td>
<td>1-25</td>
<td>Less than 1%</td>
<td></td>
</tr>
</tbody>
</table>
Singapore

River basin
- Other, please specify
 - Various

Number of facilities exposed to water risk
- 1

% company-wide facilities this represents
- 1-25

% company’s total global revenue that could be affected
- Less than 1%

Comment

Country/Region
- Chile

River basin
- Other, please specify
 - Various

Number of facilities exposed to water risk
- 1

% company-wide facilities this represents
- 1-25
% company’s total global revenue that could be affected
1-25

Comment

Country/Region
Puerto Rico

River basin
Other, please specify
Various

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company’s total global revenue that could be affected
1-25

Comment

Country/Region
Indonesia

River basin
Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company’s total global revenue that could be affected
1-25

Comment

Country/Region
Republic of Korea

River basin
Other, please specify
Various

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company’s total global revenue that could be affected
1-25
Comment

Country/Region
Pakistan

River basin
Albany River

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company's total global revenue that could be affected
1-25

Comment

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Region
India
River basin
Other, please specify
All basins across this market

Type of risk
Physical

Primary risk driver
Drought

Primary potential impact
Constraint to growth

Company-specific description
From time to time, water-related impacts may occur at facilities of The Coca-Cola Company and/or the Coca-Cola system (e.g., the cost to procure water supply may increase, local water supply may be threatened, qualitatively or quantitatively).

For the reporting year, no such impact(s) have been of a significant nature. A number of facilities across India have been identified to be located in areas of high water stress, based on our assessment with WRI aqueduct. 9 facilities in India were identified, spread across Maharashtra, Gujarat, Tamil Nadu, Telangana, Rajasthan, Jammu and Kashmir, Uttar Pradesh and Karnataka.

However, given the level of baseline water stress identified, there is a likelihood that, without any mitigation activity, the production or production capacity of these facilities could be affected by a number of potential risks, such as rising costs, community conflicts, government regulations and others.

Timeframe
4 - 6 years

Magnitude of potential impact
Medium-low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)
758,000,000

Potential financial impact figure - maximum (currency)
1,247,000,000

Explanation of financial impact
These figures represent the amount of our operating revenue that is exposed to this risk, without any mitigating activity. In other words, this is the amount of current business revenue that is dependent on this specific part of the business around which this estimate is scoped. The scope includes only the production facilities OWNED BY The Coca-Cola Company, located in India.
Assumptions below:
- Net operating revenue for the BIG Operating Group is used as a starting point.
- Assumes that revenue impact breaks down proportional to share of volume produced at a production facility. Much of this volume information is publicly available information.
- Assessment of facilities located in regions of High / Extremely High baseline water stress were done in partnership with WRI, using Aqueduct, using geolocation information.
- The low end of the range assumes that only locations with Extremely High water stress are exposed.
- The high end of the range assumes that locations with both High and Extremely High water stress are exposed.
- Estimated exposure was calculated by taking BIG Operating Group revenue, multiplying the volume share of India, and further multiplying the proportion of total volume of the market, that are produced at the facilities in focus.

Production facilities classed as Extremely High baseline water stress are identical to the nine facilities located in India, which are disclosed in this report as facilities exposed to water risk.
Primary response to risk
Adopt water efficiency, water re-use, recycling and conservation practices
Please see description below as well.

Description of response
As discussed in other parts of this disclosure, each facility is required to complete a comprehensive risk assessment, composed of 72 risk factors across 21 risk categories on water-related issues, in which the salient issues surrounding our operations in India are comprehensively addressed.

In Betul district in Madhya Pradesh, the villagers approached the NGO - Advancement for Social Action (ASA), which sought the help of HCCB.

Today, over 5000 families are served by an integrated watershed management project, across 38 villages, launched in 2015, with a clear five-year action plan, is already beginning to provide results.

Within 2 years after the program was launched, 25 farm ponds, 35 masonry stop dams and other water bodies have been developed. This is helping achieve the key target of improving availability of water for drinking, agriculture and other purposes. The five-year target for the project is to increase the farm-based income for the local population and also improve the ground water situation, among several others.

At Mehandiganj plant in Varanasi district of Uttar Pradesh, local NGOs and Hindustan Coca-Cola Beverages installed the first rainwater harvesting project nearly 15 years ago. Since then, the local community has got the support of Hindustan Coca-Cola to commission 38 rainwater harvesting structures helping recharge the ground water.

Cost of response
300,000,000

Explanation of cost of response
This number only represents the funding The Coca-Cola Company had invested in community water projects globally as of 2015 year-end. Investments in this area continue, as seen by the growing volume we have replenished to communities 191 billion liters in 2015, 221 in 2016, 248 in 2017 and 256 in 2018). However, the total costs of implementing our broader strategy in water leadership, including water efficiency improvements and waste water treatment and other water risk management projects is not included.
W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>United States of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>River basin</td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>All relevant growing regions in this country</td>
</tr>
<tr>
<td>Stage of value chain</td>
<td>Supply chain</td>
</tr>
<tr>
<td>Type of risk</td>
<td>Physical</td>
</tr>
<tr>
<td>Primary risk driver</td>
<td>Ecosystem vulnerability</td>
</tr>
<tr>
<td>Primary potential impact</td>
<td>Supply chain disruption</td>
</tr>
</tbody>
</table>

Company-specific description

There is rising demand for key commodities, particularly agricultural commodities on which our business depends. As we engage in this space, there are many aspects to consider: human and labor rights, women's empowerment, economic development, water management and energy and climate impacts. As an example, agriculture represents approximately 70% of the world’s water withdrawals, so water must be considered in the agriculture space.
Additionally, through product water footprinting exercises, we have ascertained that for some of our products, 80% of our water use sits within the agricultural supply chain.

Our business uses a significant volume of corn-derived sweetener, high fructose corn syrup, as a sweetener in our beverages in many of key markets, including the United States of America. If the production of corn is impacted, a significant portion of our product portfolio in this market will be directly impacted, potentially increasing cost and creating challenges on the availability of sourcing for a key ingredient.

We therefore consider the water-related risks in the growing (i.e. sourcing) of this raw material to be a critical risk to monitor and understand.

Timeframe
- 4 - 6 years

Magnitude of potential financial impact
- Medium

Likelihood
- More likely than not

Are you able to provide a potential financial impact figure?
- Yes, an estimated range

Potential financial impact figure (currency)

- Potential financial impact figure - minimum (currency)
 - 1,604,000,000

- Potential financial impact figure - maximum (currency)
 - 4,623,000,000

Explanation of financial impact
These figures represent the amount of our operating revenue that is exposed to this risk, without any mitigating activity. In other words, this is the amount of current business revenue that is dependent on this specific part of the value chain. The scope includes only the sourcing of corn-derived sweeteners used in the US market, which is sourced almost entirely from the United States.

Assumptions below:
- Net operating revenue for North America Operating Group is used as a starting point.
- Assumes that USA revenue breaks down proportional to its UC volume share within the NA OG.
- Assumes that the global percentage of low or no-calorie beverages in our portfolio (27%) is applicable as an average to the USA market.
- Low end of the range assumes that only sourcing locations with Extremely High water stress are exposed.
- High end of the range assumes that sourcing locations with both High and Extremely High water stress are exposed.
- % of corn sourced from regions of High / Extremely High baseline water stress were done in partnership with WRI, using Aqueduct, on a weight basis of our tonnes purchased from each growing region.

Estimated exposure was calculated by taking North America Operating Group revenue, multiplying the volume share of USA, and further applying % of portfolio that use corn-derived sweetener, based on assumption above. We then multiply the % of our corn that is estimated to be sourced from regions of high / extremely high baseline water stress.

Primary response to risk

Promote the adoption of sustainable irrigation practices among suppliers

Description of response

In 2013, we set a goal to more sustainably source our priority ingredients by 2020. Corn is one of our priority ingredients, in the form of High Fructose Corn Syrup. We require that our suppliers meet our 15 Sustainable Agriculture Guiding Principles (SAGP), which establish the framework for progress and are integrated into governance procurement processes.

Specifically on corn, we advance our sustainable sourcing through membership in Field to Market: The Alliance for Sustainable Agriculture, through which we work on more sustainable corn production in the United States. With our four biggest corn suppliers, we are aiming to fulfill a 2014 commitment to expand the application of Field to Market’s Fieldprint® Platform, a data-driven tool that quantifies water use, energy use, greenhouse gas emissions and other measures of sustainability performance. The target is to engage corn farmers representing 1 million acres by 2020, which would position The Coca-Cola Company with 100% more sustainable corn production in the U.S. market. By the end of 2017, we had enrolled approximately 650,000 acres.
Ingredion is one of The Coca-Cola Company’s biggest suppliers of corn syrup. The supplier also uses the SAI Platform as a global benchmark and references all efforts with local growers to this universal standard. By the end of 2017, Ingredion had approximately 1,690,000 metric tons of crops covered in its sustainable sourcing program.

Cost of response
300,000,000

Explanation of cost of response
This number only represents the funding The Coca-Cola Company had invested in community water projects globally as of 2015 year-end. Investments in this area continue, as seen by the growing volume we have replenished to communities 191 billion liters in 2015, 221 in 2016, 248 in 2017, 256 in 2018). However, the total costs of implementing our broader strategy in water leadership, including water efficiency improvements and waste water treatment and other water risk management projects is not included.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Type of opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
</tr>
<tr>
<td>Primary water-related opportunity</td>
</tr>
</tbody>
</table>
Improved water efficiency in operations

Company-specific description & strategy to realize opportunity

The Coca-Cola system uses about 300 billion liters of water across 800+ bottling facilities annually. Aside from the procurement cost, this water has to undergo multiple additional treatment processes (RO, carbon, polishing, UV etc.), which create significant operating cost. Hence, a fundamental pillar of our water stewardship work is managing the water use in our worldwide bottling plants. By 2020, we aim to reduce our water-use ratio while growing our unit case volume, with a target to improve water efficiency by 25 percent over 2010 levels. In 2018, our water efficiency improved for the 16th consecutive year, with a 2 percent improvement over 2017, and a near 30 percent improvement since 2004. We work in partnership with our bottling partners and business units globally to drive toward this goal, including mandatory tracking and reporting on progress on our internal KPI for this measure, which we refer to as "Water-use ratio."

One of our largest bottling partners, Coca-Cola European Partners, in 2018 €2.7 million was invested in water efficient technologies and processes, resulting in water savings of 75,170 m³.

In 2018, at the Furstenfeldbruck manufacturing site in Germany an investment in water efficient bottle washers, saved up to 1,400 m³ of water per month. In Spain, our Barcelona site introduced a new system to reuse wastewater in 2018, which helped regenerate the ecosystem of a nearby lagoon and increased the biodiversity of aquatic flora and fauna.

Estimated timeframe for realization

> 6 years

Magnitude of potential financial impact

Medium-high

Are you able to provide a potential financial impact figure?

Yes, a single figure estimate

Potential financial impact figure (currency)

1,000,000,000

Potential financial impact figure – minimum (currency)

1,000,000,000
Potential financial impact figure – maximum (currency)

Explanation of financial impact
In 2004, we were using 2.7 liters of water to make 1 liter of product. That means that 1 liter of water was in the product and another 1.7 liters was used in the manufacturing process, mostly for keeping equipment clean. At the end of 2018, we were using 1.89 liters of water to make 1 liter of product, with the goal to reduce it to 1.7 liters of water by 2020. Through improved water-use efficiency, system-wide we can save around US$1 billion (cumulative 2011 through 2020) in water acquisition, internal handling and discharge fees.

W5. Facility-level water accounting
W5.1
(W5.1) For each facility referenced in W4.1c, provide coordinates, total water accounting data and comparisons with the previous reporting year.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name (optional)</th>
<th>Country/Region</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 1</td>
<td>PREMIER</td>
<td>South Africa</td>
<td>Kwazulu Natal</td>
</tr>
</tbody>
</table>
Latitude
-29.861825

Longitude
31.009909

Total water withdrawals at this facility (megaliters/year)
93

Comparison of withdrawals with previous reporting year
Much lower

Total water discharges at this facility (megaliters/year)
31

Comparison of discharges with previous reporting year
Much lower

Total water consumption at this facility (megaliters/year)
62

Comparison of consumption with previous reporting year
Much lower

Please explain
Production at this facility declined significantly in 2018. The numbers all reflect this lower production output.

Facility reference number
Facility 2

Facility name (optional)
PORT ELIZABETH

Country/Region
South Africa

River basin
Other, please specify
Eastern Cape

Latitude
-33.943459

Longitude
25.53274

Total water withdrawals at this facility (megaliters/year)
301

Comparison of withdrawals with previous reporting year
Higher

Total water discharges at this facility (megaliters/year)
69

Comparison of discharges with previous reporting year
Much lower

Total water consumption at this facility (megaliters/year)
231

Comparison of consumption with previous reporting year
Much higher
Please explain

Production volume at this site increased, and total withdrawal reflects this increase.

Facility reference number
Facility 3

Facility name (optional)
PHOENIX

Country/Region
South Africa

River basin
Other, please specify
Kwazulu Natal

Latitude
-29.861825

Longitude
31.009909

Total water withdrawals at this facility (megaliters/year)
631

Comparison of withdrawals with previous reporting year
About the same

Total water discharges at this facility (megaliters/year)
Comparison of discharges with previous reporting year
Lower

Total water consumption at this facility (megaliters/year)
564

Comparison of consumption with previous reporting year
About the same

Please explain
Production volume decreased slightly at this site. Data here reflects this trend.

Facility reference number
Facility 4

Facility name (optional)
WADA

Country/Region
India

River basin
Other, please specify
Maharashtra

Latitude
19.194329
Longitude
72.970177

Total water withdrawals at this facility (megaliters/year)
439

Comparison of withdrawals with previous reporting year
Lower

Total water discharges at this facility (megaliters/year)
229

Comparison of discharges with previous reporting year
About the same

Total water consumption at this facility (megaliters/year)
211

Comparison of consumption with previous reporting year
Much lower

Please explain
Decrease in water consumption.

Facility reference number
Facility 5

Facility name (optional)
GOBLEJ
Country/Region
India

River basin
Other, please specify
Gujarat

Latitude
23.0524

Longitude
72.5337

Total water withdrawals at this facility (megaliters/year)
776

Comparison of withdrawals with previous reporting year
Higher

Total water discharges at this facility (megaliters/year)
300

Comparison of discharges with previous reporting year
Much higher

Total water consumption at this facility (megaliters/year)
476

Comparison of consumption with previous reporting year
Higher

Please explain
Increase in production, reflected in increase in water use.
Facility reference number
Facility 6

Facility name (optional)
NEMAM

Country/Region
India

River basin
Other, please specify
Tamil nadu

Latitude
13.1444

Longitude
79.894

Total water withdrawals at this facility (megaliters/year)
184

Comparison of withdrawals with previous reporting year
About the same

Total water discharges at this facility (megaliters/year)
58

Comparison of discharges with previous reporting year
Lower
Total water consumption at this facility (megaliters/year)
127

Comparison of consumption with previous reporting year
Higher

Please explain
Production increase reflected in increased total water use and reduced discharge.

Facility reference number
Facility 7

Facility name (optional)
AMEENPUR

Country/Region
India

River basin
Other, please specify
telangana

Latitude
17.361622

Longitude
78.47473

Total water withdrawals at this facility (megaliters/year)
448
Comparison of withdrawals with previous reporting year
 Higher

Total water discharges at this facility (megaliters/year)
 164

Comparison of discharges with previous reporting year
 Much higher

Total water consumption at this facility (megaliters/year)
 284

Comparison of consumption with previous reporting year
 Lower

Please explain
 Production volumes increased.

Facility reference number
 Facility 8

Facility name (optional)
 DASNA

Country/Region
 India

River basin
 Other, please specify
 Rajasthan
Latitude
28.7002

Longitude
77.54469

Total water withdrawals at this facility (megaliters/year)
570

Comparison of withdrawals with previous reporting year
About the same

Total water discharges at this facility (megaliters/year)
261

Comparison of discharges with previous reporting year
Much higher

Total water consumption at this facility (megaliters/year)
309

Comparison of consumption with previous reporting year
Much lower

Please explain
Production volumes stable. Reflected in overall withdrawals.

Facility reference number
Facility 9

Facility name (optional)

Country/Region
 India

River basin
 Other, please specify
 Jammu and Kashmir

Latitude
 32.728061

Longitude
 74.948847

Total water withdrawals at this facility (megaliters/year)
 22

Comparison of withdrawals with previous reporting year
 About the same

Total water discharges at this facility (megaliters/year)
 11

Comparison of discharges with previous reporting year
 Lower

Total water consumption at this facility (megaliters/year)
 11

Comparison of consumption with previous reporting year
 Higher
Please explain
Production fairly stable.

Facility reference number
Facility 10

Facility name (optional)
KANPUR

Country/Region
India

River basin
Other, please specify
Uttar Pradesh

Latitude
26.5277

Longitude
80.2594

Total water withdrawals at this facility (megaliters/year)
27

Comparison of withdrawals with previous reporting year
About the same

Total water discharges at this facility (megaliters/year)
16
Comparison of discharges with previous reporting year
 Lower

Total water consumption at this facility (megaliters/year)
 11

Comparison of consumption with previous reporting year
 About the same

Please explain
 Production volumes decreased slightly - reflected in numbers above.

Facility reference number
 Facility 11

Facility name (optional)
 KALAHASTI

Country/Region
 India

River basin
 Other, please specify
 Karnataka

Latitude
 12.895511

Longitude
 77.866926
Total water withdrawals at this facility (megaliters/year)
153

Comparison of withdrawals with previous reporting year
Lower

Total water discharges at this facility (megaliters/year)
58

Comparison of discharges with previous reporting year
Lower

Total water consumption at this facility (megaliters/year)
95

Comparison of consumption with previous reporting year
About the same

Please explain
Production volume decreased, reflected in water use numbers above.

Facility reference number
Facility 12

Facility name (optional)
CPS SINGAPORE

Country/Region
Singapore
River basin
 Other, please specify
 Singapore

Latitude
 1.279715

Longitude
 103.7964

Total water withdrawals at this facility (megaliters/year)
 57

Comparison of withdrawals with previous reporting year
 Higher

Total water discharges at this facility (megaliters/year)
 34

Comparison of discharges with previous reporting year
 Much higher

Total water consumption at this facility (megaliters/year)
 23

Comparison of consumption with previous reporting year
 About the same

Please explain
 Production volume increased, reflected in increased water use above.
Facility reference number
Facility 13

Facility name (optional)
HCCB SANAND

Country/Region
India

River basin
Other, please specify
Gujarat

Latitude
22.993238

Longitude
72.288917

Total water withdrawals at this facility (megaliters/year)
62

Comparison of withdrawals with previous reporting year
Higher

Total water discharges at this facility (megaliters/year)
29

Comparison of discharges with previous reporting year
Higher

Total water consumption at this facility (megaliters/year)
Comparison of consumption with previous reporting year

Higher

Please explain
Production facility is new. Operational in 2018.

Facility reference number
Facility 14

Facility name (optional)
CPS CHILE

Country/Region
Chile

River basin
Other, please specify
Santiago

Latitude
23.6411

Longitude
70.3909

Total water withdrawals at this facility (megaliters/year)
24
Comparison of withdrawals with previous reporting year
 About the same

Total water discharges at this facility (megaliters/year)
 6

Comparison of discharges with previous reporting year
 Lower

Total water consumption at this facility (megaliters/year)
 17

Comparison of consumption with previous reporting year
 About the same

Please explain
 Slight decreased in production is reflected in numbers above.

Facility reference number
 Facility 15

Facility name (optional)
 CPS CIDRA

Country/Region
 Puerto Rico

River basin
 Other, please specify
 Cidra
Latitude
18.3839

Longitude
66.14413

Total water withdrawals at this facility (megaliters/year)
54

Comparison of withdrawals with previous reporting year
Much higher

Total water discharges at this facility (megaliters/year)
46

Comparison of discharges with previous reporting year
Higher

Total water consumption at this facility (megaliters/year)
8

Comparison of consumption with previous reporting year
Higher

Please explain
Production volume increased, reflected in water use above.

Facility reference number
Facility 16

Facility name (optional)
CPS JAKARTA

Country/Region
Indonesia

River basin
Other, please specify
Banten

Latitude
6.113807

Longitude
106.866

Total water withdrawals at this facility (megaliters/year)
7

Comparison of withdrawals with previous reporting year
Higher

Total water discharges at this facility (megaliters/year)
2

Comparison of discharges with previous reporting year
Higher

Total water consumption at this facility (megaliters/year)
5

Comparison of consumption with previous reporting year
About the same
Please explain
Total withdrawals and discharge increased in the year.

Facility reference number
Facility 17

Facility name (optional)
CPS KOREA

Country/Region
Republic of Korea

River basin
Other, please specify
Gyeonggi-do

Latitude
37.349

Longitude
126.9678

Total water withdrawals at this facility (megaliters/year)
5

Comparison of withdrawals with previous reporting year
About the same

Total water discharges at this facility (megaliters/year)
3
Comparison of discharges with previous reporting year
 About the same

Total water consumption at this facility (megaliters/year)
 2

Comparison of consumption with previous reporting year
 About the same

Please explain
 Production volume increased slightly - agrees with numbers above.

Facility reference number
 Facility 18

Facility name (optional)
 CPS PAKISTAN

Country/Region
 Pakistan

River basin
 Other, please specify
 Punjab

Latitude
 31.528027

Longitude
 74.3385
Total water withdrawals at this facility (megaliters/year)
 10

Comparison of withdrawals with previous reporting year
 Lower

Total water discharges at this facility (megaliters/year)
 1

Comparison of discharges with previous reporting year
 Much lower

Total water consumption at this facility (megaliters/year)
 9

Comparison of consumption with previous reporting year
 About the same

Please explain
 Production volume aligns with water use data above.

Facility reference number
 Facility 19

Facility name (optional)
 MEYCAUAYAN

Country/Region
 Philippines
River basin
Other, please specify
Bulacan

Latitude
14.7345

Longitude
120.957163

Total water withdrawals at this facility (megaliters/year)
167

Comparison of withdrawals with previous reporting year
Much higher

Total water discharges at this facility (megaliters/year)
73

Comparison of discharges with previous reporting year
Much higher

Total water consumption at this facility (megaliters/year)
94

Comparison of consumption with previous reporting year
Lower

Please explain
Production increased slightly, reflected in numbers above.
W5.1a

(W5.1a) For each facility referenced in W5.1, provide withdrawal data by water source.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name</th>
<th>Fresh surface water, including rainwater, water from wetlands, rivers and lakes</th>
<th>Brackish surface water/seawater</th>
<th>Groundwater - renewable</th>
<th>Groundwater - non-renewable</th>
<th>Produced/Entrained water</th>
<th>Third party sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 1</td>
<td>PREMIER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>93</td>
</tr>
</tbody>
</table>

Comment
<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>PORT ELIZABETH</td>
</tr>
</tbody>
</table>

Fresh surface water, including rainwater, water from wetlands, rivers and lakes	0
Brackish surface water/seawater	0
Groundwater - renewable	0
Groundwater - non-renewable	0
Produced/Entrained water	0
Third party sources	301

Comment

Facility reference number

Facility 3

Facility name
PHOENIX

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater - renewable</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Third party sources</td>
<td>631</td>
</tr>
</tbody>
</table>

Comment

Facility reference number
Facility 4

Facility name
WADA

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
- 439

Brackish surface water/seawater
- 0

Groundwater - renewable
- 0

Groundwater - non-renewable
- 0

Produced/Entrained water
- 0

Third party sources
- 0

Comment

Facility reference number
- Facility 5

Facility name
- GOBLEJ
<table>
<thead>
<tr>
<th>Source Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>649</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater - renewable</td>
<td>127</td>
</tr>
<tr>
<td>Groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Third party sources</td>
<td>0</td>
</tr>
</tbody>
</table>

Comment

Facility reference number

Facility 6

Facility name

NEMAM

Fresh surface water, including rainwater, water from wetlands, rivers and lakes

0
<table>
<thead>
<tr>
<th>Source Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater - renewable</td>
<td>184</td>
</tr>
<tr>
<td>Groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Third party sources</td>
<td>0</td>
</tr>
</tbody>
</table>

Comment

Facility reference number
- Facility 7

Facility name
- AMEENPUR

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
- 0

Brackish surface water/seawater
- 0
Groundwater - renewable
0

Groundwater - non-renewable
0

Produced/Entrained water
0

Third party sources
448

Comment

Facility reference number
Facility 8

Facility name
DASNA

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
570
Groundwater - non-renewable
0

Produced/Entrained water
0

Third party sources
0

Comment

Facility reference number
Facility 9

Facility name
JAMMU

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
22

Groundwater - non-renewable
0
Produced/Entrained water
0

Third party sources
0

Comment

Facility reference number
Facility 10

Facility name
KANPUR

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
27

Groundwater - non-renewable
0

Produced/Entrained water
0
Third party sources
0

Comment

Facility reference number
Facility 11

Facility name
KALAHASTI

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
153

Groundwater - non-renewable
0

Produced/Entrained water
0

Third party sources
0
Facility reference number
Facility 12

Facility name
CPS SINGAPORE

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
0

Groundwater - non-renewable
0

Produced/Entrained water
0

Third party sources
57
Facility reference number
 Facility 13

Facility name
 HCCB SANAND

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
 62

Brackish surface water/seawater
 0

Groundwater - renewable
 0

Groundwater - non-renewable
 0

Produced/Entrained water
 0

Third party sources
 0

Comment
Facility 14

Facility name
CPS CHILE

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
11

Groundwater - non-renewable
0

Produced/Entrained water
0

Third party sources
13

Comment

Facility reference number
Facility 15

Facility name
CPS CIDRA

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
 0

Brackish surface water/seawater
 0

Groundwater - renewable
 54

Groundwater - non-renewable
 0

Produced/Entrained water
 0

Third party sources
 0

Comment

Facility reference number
Facility 16

Facility name
CPS JAKARTA
<table>
<thead>
<tr>
<th>Water Source</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater - renewable</td>
<td>7</td>
</tr>
<tr>
<td>Groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Third party sources</td>
<td>0</td>
</tr>
</tbody>
</table>

Comment

Facility reference number
- Facility 17

Facility name
- CPS KOREA

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
- 0
Brackish surface water/seawater
0

Groundwater - renewable
0

Groundwater - non-renewable
0

Produced/Entrained water
0

Third party sources
5

Comment

Facility reference number
Facility 18

Facility name
CPS PAKISTAN

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0
<table>
<thead>
<tr>
<th>Source Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater - renewable</td>
<td>10</td>
</tr>
<tr>
<td>Groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Third party sources</td>
<td>0</td>
</tr>
</tbody>
</table>

Facility reference number
Facility 19

Facility name
MEYCAUAYAN

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater - renewable</td>
<td>167</td>
</tr>
</tbody>
</table>
Groundwater - non-renewable

0

Produced/Entrained water

0

Third party sources

0

Comment

W5.1b

(W5.1b) For each facility referenced in W5.1, provide discharge data by destination.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name</th>
<th>Fresh surface water</th>
<th>Brackish surface water/Seawater</th>
<th>Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 1</td>
<td>PREMIER</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Third party destinations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Comment

Facility reference number

<table>
<thead>
<tr>
<th>Facility reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 2</td>
</tr>
</tbody>
</table>

Facility name

<table>
<thead>
<tr>
<th>Facility name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORT ELIZABETH</td>
</tr>
</tbody>
</table>

Fresh surface water

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Brackish surface water/Seawater

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Groundwater

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Third party destinations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

Comment

Facility reference number

Facility 3

Facility name
PHOENIX

Fresh surface water
0

Brackish surface water/Seawater
0

Groundwater
0

Third party destinations
67

Comment

Facility 4

Facility name
WADA

Fresh surface water
0
<table>
<thead>
<tr>
<th>Source of Water</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brackish surface water/Seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>229</td>
</tr>
</tbody>
</table>

Comment

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>GOBLEJ</td>
</tr>
<tr>
<td>Fresh surface water</td>
<td>24</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>276</td>
</tr>
<tr>
<td>Facility reference number</td>
<td>Facility 6</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Facility name</td>
<td>NEMAM</td>
</tr>
<tr>
<td>Fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td></td>
</tr>
<tr>
<td>Source Type</td>
<td>Quantity</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>164</td>
</tr>
</tbody>
</table>

Comment

Facility reference number
- Facility 8

Facility name
- DASNA

Fresh surface water
- 0

Brackish surface water/Seawater
- 0
Groundwater
0

Third party destinations
261

Comment

Facility reference number
Facility 9

Facility name
JAMMU

Fresh surface water
0

Brackish surface water/Seawater
0

Groundwater
0

Third party destinations
11

Comment
Facility reference number
Facility 10

Facility name
KANPUR

Fresh surface water
0

Brackish surface water/Seawater
0

Groundwater
0

Third party destinations
16

Comment
<table>
<thead>
<tr>
<th>Water Source</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>58</td>
</tr>
</tbody>
</table>

Facility reference number
Facility 12

Facility name
CPS SINGAPORE

<table>
<thead>
<tr>
<th>Water Source</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>6</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0</td>
</tr>
</tbody>
</table>
Third party destinations
28

Comment

Facility reference number
Facility 13

Facility name
HCCB SANAND

Fresh surface water
0

Brackish surface water/Seawater
0

Groundwater
0

Third party destinations
29

Comment

Facility reference number
<table>
<thead>
<tr>
<th>Facility name</th>
<th>Fresh surface water</th>
<th>Brackish surface water/Seawater</th>
<th>Groundwater</th>
<th>Third party destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS CHILE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facility name</th>
<th>Fresh surface water</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS CIDRA</td>
<td>0</td>
</tr>
</tbody>
</table>

Facility reference number
Facility 15

Facility name
CPS CIDRA

Fresh surface water
0
<table>
<thead>
<tr>
<th>Source Type</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brackish surface water/Seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>46</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>

Facility reference number
- Facility 16

Facility name
- CPS JAKARTA

Fresh surface water
- 0

Brackish surface water/Seawater
- 0

Groundwater
- 0

Third party destinations
- 2
Facility reference number
Facility 17

Facility name
CPS KOREA

Fresh surface water
0

Brackish surface water/Seawater
0

Groundwater
0

Third party destinations
3

Comment

Facility reference number
Facility 18

Facility name
CPS PAKISTAN

Fresh surface water
0

Brackish surface water/Seawater
0

Groundwater
0

Third party destinations
1

Comment

Facility reference number
Facility 19

Facility name
MEYCAUAYAN

Fresh surface water
0

Brackish surface water/Seawater
0
Groundwater
0

Third party destinations
73

Comment

W5.1c

(W5.1c) For each facility referenced in W5.1, provide the proportion of your total water use that is recycled or reused, and give the comparison with the previous reporting year.

Facility reference number
Facility 1

Facility name
PREMIER

% recycled or reused
26-50%

Comparison with previous reporting year
About the same

Please explain
No changes to previous year.
<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>PORT ELIZABETH</td>
</tr>
<tr>
<td>% recycled or reused</td>
<td>None</td>
</tr>
<tr>
<td>Comparison with previous reporting year</td>
<td>About the same</td>
</tr>
<tr>
<td>Please explain</td>
<td>No WW recycled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>PHOENIX</td>
</tr>
<tr>
<td>% recycled or reused</td>
<td>1-10%</td>
</tr>
<tr>
<td>Comparison with previous reporting year</td>
<td>Higher</td>
</tr>
</tbody>
</table>
Please explain
Increased recycled / reused volume in production processes (not used in product).

Facility reference number
Facility 4

Facility name
WADA

% recycled or reused
26-50%

Comparison with previous reporting year
Much lower

Please explain
Reduction from last year due to potential changes in data measurement and metering practices on site.

Facility reference number
Facility 5

Facility name
GOBLEJ

% recycled or reused
11-25%
Comparison with previous reporting year
Much lower

Please explain
Reduction from last year due to potential changes in data measurement and metering practices on site.

Facility reference number
Facility 6

Facility name
NEMAM

% recycled or reused
11-25%

Comparison with previous reporting year
Higher

Please explain
Increased use of recycled or reused water in production processes.

Facility reference number
Facility 7

Facility name
AMEENPUR
% recycled or reused
26-50%

Comparison with previous reporting year
Higher

Please explain
Increased use of recycled or reused water in production processes.

Facility reference number
Facility 8

Facility name
DASNA

% recycled or reused
11-25%

Comparison with previous reporting year
About the same

Please explain
No significant change from previous year.

Facility reference number
Facility 9

Facility name
JAMMU

% recycled or reused
None

Comparison with previous reporting year
Lower

Please explain
No WW recycled

Facility reference number
Facility 10

Facility name
KANPUR

% recycled or reused
None

Comparison with previous reporting year
About the same

Please explain
No WW recycled
Facility 11

Facility name
KALAHAStI

% recycled or reused
None

Comparison with previous reporting year
Much lower

Please explain

Facility reference number
Facility 12

Facility name
CPS SINGAPORE

% recycled or reused
None

Comparison with previous reporting year
About the same

Please explain
No WW recycled
Facility reference number
 Facility 13

Facility name
 HCCB SANAND

% recycled or reused
 51-75%

Comparison with previous reporting year
 Much higher

Please explain
 No WW recycled in 2018

Facility reference number
 Facility 14

Facility name
 CPS CHILE

% recycled or reused
 26-50%

Comparison with previous reporting year
 Much higher
Please explain
Increase use of recycled or reused water in production processes.

Facility reference number
Facility 15

Facility name
CPS CIDRA

% recycled or reused
76-99%

Comparison with previous reporting year
About the same

Please explain
No significant changes from last year.

Facility reference number
Facility 16

Facility name
CPS JAKARTA

% recycled or reused
None
Comparison with previous reporting year
 About the same

Please explain
 No recycled or reused water used.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>CPS KOREA</td>
</tr>
</tbody>
</table>

% recycled or reused
 None

Comparison with previous reporting year
 About the same

Please explain
 No recycled or reused water used.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>CPS PAKISTAN</td>
</tr>
</tbody>
</table>
% recycled or reused
51-75%

Comparison with previous reporting year
Higher

Please explain
Increased use of recycled or reused water in production processes.

Facility reference number
Facility 19

Facility name
MEYCAUAYAN

% recycled or reused
None

Comparison with previous reporting year
About the same

Please explain
No recycled or reused water used.

W5.1d

(W5.1d) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?

Water withdrawals – total volumes
What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.

Water withdrawals – volume by source

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.

Water withdrawals – quality
% verified
76-100

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.

Water discharges – total volumes

% verified
76-100

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.

Water discharges – volume by destination

Classified - Confidential
What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.

Water discharges – volume by treatment method

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.
Water discharge quality – quality by standard effluent parameters

| % verified | 76-100 |

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.

Water discharge quality – temperature

| % verified | Not verified |

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.
Water consumption – total volume

% verified
76-100

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.

Water recycled/reused

% verified
76-100

What standard and methodology was used?

We have a goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. To this end, our internal requirements promote effective and responsible water use, treatment and disposal at a level that supports aquatic life. It is applied throughout the value chain to all Coca-Cola system locations globally. Our requirements mandate not only the items required for monitoring, but also the methods by which those items must be measured. Checks are conducted quarterly for compliance, in the case of waste water, through external labs, and in the case of water volumetric measurements regarding usage and discharge of water, through entry into our internal data systems and subsequent plausibility checks and annual data validation for sustainability reporting. Local validation of these requirements are done at a local level, including the choice of third party and external reviewers.
W6. Governance

W6.1

(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Company-wide</td>
<td>We monitor risks and opportunities related to water, integrate these findings into our strategies, and drive towards 2 global goals: By 2020, safely return to communities and nature an amount of water equal to what we use in our finished beverages and their production. By 2020, improve water efficiency in manufacturing operations by 25% compared with a 2010 baseline. Our policy is therefore aimed at driving our progress in these strategic areas of importance, which include but are not limited to: Manufacturing facility performance (efficiency, reuse, stormwater management, and wastewater treatment) Water resource management in our agricultural ingredient supply chain Watershed protection Sustainable communities Raising global awareness and action around water challenges Engagement on water policy. Driving each of these areas requires extensive partnership and collaboration with our bottling partners, suppliers and farmers, customers, NGOs, trade bodies, policy makers and others.</td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of business impact on water</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of water-related performance standards for direct operations</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Reference to international standards and widely-recognized water initiatives</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Company water targets and goals</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Commitment to align with public policy initiatives, such as the SDGs</td>
<td></td>
</tr>
</tbody>
</table>
Commitments beyond regulatory compliance
Commitment to water-related innovation
Commitment to stakeholder awareness and education
Commitment to water stewardship and/or collective action
Acknowledgement of the human right to water and sanitation
Recognition of environmental linkages, for example, due to climate change

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of Individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board-level committee</td>
<td>The Public Issues and Diversity Review Committee (PIDRC) bears the highest level of direct responsibility for water-related issues within The Coca-Cola Company. The Committee is established by the Board to aid the Board in discharging its responsibilities relating to the Company's positions on sustainability, corporate social responsibility and public issues of significance, which may affect shareowners, the</td>
</tr>
</tbody>
</table>
Company, the business community and the general public; and to perform such other duties as may be delegated by the Board and consistent with the charter, including the nature and scope of the Company’s sustainability goals and the Company's progress toward achieving those goals.

The Chair of the Public Issues and Diversity Review Committee (PIDRC) of the Company's Board of Directors. She is the Chair and Chief Executive Officer of New Ventures, LLC and has been a Director of The Coca-Cola Company since 2007.

W6.2b

(W6.2b) Provide further details on the board's oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Scheduled - all meetings</td>
<td>Monitoring implementation and performance</td>
<td>Water-related issues receive direct oversight from the Board because we believe it is essential to our success as a business.</td>
</tr>
<tr>
<td></td>
<td>Overseeing acquisitions and divestiture</td>
<td>Review of water-related issues is scheduled at a minimum of one full-Board meeting annually, and all Public Issues and Diversity Review committee meetings. The charter states that as part of its authorities and responsibilities, the Committee will review the nature and scope of the Company's sustainability goals and the Company's progress toward achieving those goals. The Committee will receive at least annually, presentations by the Chief Public Affairs, Communications and Sustainability Officer, and others as required, related to the accomplishment of the Company's sustainability goals. To monitor performance against the Company’s strategic goals and leadership objectives, the Board receives regular updates and actively engages in dialogue with our Company’s senior leaders.</td>
</tr>
<tr>
<td></td>
<td>Overseeing major capital expenditures</td>
<td>These updates occur monthly, and a report is generated for the Public Issues and Diversity</td>
</tr>
<tr>
<td></td>
<td>Providing employee incentives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding annual budgets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding business plans</td>
<td></td>
</tr>
</tbody>
</table>

Classified - Confidential
Reviewing and guiding major plans of action
- Reviewing and guiding risk management policies
- Reviewing and guiding strategy
- Reviewing and guiding corporate responsibility strategy
- Reviewing innovation/R&D priorities
- Setting performance objectives

Review Committee quarterly.

In addition, inherent in the Board’s responsibilities is an understanding and oversight of the various risks facing the Company, including water-related risks. The Board has implemented a risk governance framework designed to understand critical risks in the Company’s business and strategy, allocate responsibilities for risk oversight among the full Board and its committees; evaluate the Company’s risk management processes and whether they are functioning adequately, among others.

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Responsibility</th>
<th>Frequency of reporting to the board on water-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Both assessing and managing water-related risks and opportunities</td>
<td>More frequently than quarterly</td>
</tr>
</tbody>
</table>

153

Classified - Confidential
Please explain
The Chief Executive Officer is appointed on the Board of Conveners for the 2030 Water Resources Group. In addition, The Coca-Cola Company became one of the first six companies to commit to the CEO Water Mandate in 2007.

Internally, a review of water-related issues is scheduled at a minimum of one full-Board meeting annually, flowing up primarily from reporting out of the Public Issues and Diversity Review committee meetings. The charter states that as part of its authorities and responsibilities, the Committee will review the nature and scope of the Company's sustainability goals and the Company's progress toward achieving those goals. Our goals to replenish 100% of the water we use in products and operations, and improve 25% in efficiency by 2020 are included within this set of goals.

Name of the position(s) and/or committee(s)
Other C-Suite Officer, please specify
Chief PAC and Sustainability Officer

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
The SVP, Chief PAC and Sustainability Officer reports to the President and CEO. Review of water-related issues is scheduled at a minimum of one full-Board meeting annually, and all Public Issues and Diversity Review Committee (PIDRC) meetings. The Committee will review the nature and scope of the Company's sustainability goals and the Company's progress toward achieving those goals, including our Replenish and Efficiency goals related to water. To monitor performance against the Company’s strategic goals and leadership objectives, the Board receives regular updates and actively engages in dialogue with our Company’s senior leaders, led by the CEO. These updates occur monthly, and a report is generated for the PIDRC quarterly.
In addition to the above, the Committee will receive at least annually, presentations by the Chief PAC and Sustainability Officer, and others as required, related to the accomplishment of the Company’s sustainability goals.

W-FB6.4/W-CH6.4/W-EU6.4/W-OG6.4/W-MM6.4

(W-FB6.4/W-CH6.4/W-EU6.4/W-OG6.4/W-MM6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

Yes

W-FB6.4a/W-CH6.4a/W-EU6.4a/W-OG6.4a/W-MM6.4a

(W-FB6.4a/W-CH6.4a/W-EU6.4a/W-OG6.4a/W-MM6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Who is entitled to benefit from these incentives?</th>
<th>Indicator for incentivized performance</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Reduction of water withdrawals</td>
<td>Our Replenish and Efficiency goals are key goals in the Company’s 2020 sustainability objectives.</td>
</tr>
<tr>
<td></td>
<td>Reduction in consumptive volumes</td>
<td>Role of non-financial results in pay programs: Progress toward non-financial goals that are critical to our business, including our sustainability focus areas, add value for our shareowners and other stakeholders. We started to take these areas into account in a more structured way in 2016 as part of the annual incentive program (see page 53 of our 2017 Proxy Statement).</td>
</tr>
<tr>
<td></td>
<td>Reduction of product water intensity</td>
<td>Compensation Decisions: Annual Incentive: The individual performance amount was determined based on annual performance highlights, and progress in our sustainability focus areas was also considered.</td>
</tr>
<tr>
<td>monetary reward</td>
<td>Efficiency project or target – direct operations</td>
<td></td>
</tr>
<tr>
<td>monetary reward</td>
<td>Efficiency project or target – downstream in the value chain</td>
<td></td>
</tr>
<tr>
<td>Efficiency project or target – upstream in the value chain</td>
<td>Individual Performance Amounts: An Individual Performance Amount is awarded based on an assessment of an executive’s individual performance throughout the year. For the Named Executive Officers, consideration is given for contributions toward the Company’s strategic initiatives on People, Planet, Productivity, Partners, Portfolio, and Profit. This also includes quantitative and qualitative factors (for example, each executive’s contribution to overall Company results and attainment of business/operating unit goals) and other priorities such as volume and value share, total shareowner return and sustainability. The Committee continues to increase focus on individual performance through the lens of non-financial initiatives that benefit the long-term strength of the Company.</td>
<td></td>
</tr>
<tr>
<td>Effluent quality improvements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior change related indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply chain engagement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing access to workplace WASH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-related community project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, please specify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water replenish target</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognition (non-monetary)</td>
<td>Other, please specify Executive Operating Team [Presidents of Operating Groups (Geographical)]</td>
<td>Reduction of water withdrawals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction in consumptive volumes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction of product water intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efficiency project or target – direct operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efficiency project or target – downstream in the value chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually the company awards our geographical business units with a recognition award called the Robert W. Woodruff Cup. The Robert W. Woodruff Cup rewards the business unit that most directly connects its efforts and results to the short and long-term goals of the company - including meeting goals for net revenue and profit before tax, as well as growing value share compared to the prior year. The Robert W. Woodruff Cup, named for our company's longtime leader and one of the 20th century's premier marketers, is our most prestigious operating award, honoring the top-performing business unit in our worldwide business system. The Woodruff Cup rewards the business unit that most directly connects its efforts and results to the short- and long-term goals of the company.</td>
</tr>
<tr>
<td>Efficiency project or target – upstream in the value chain</td>
<td>Determination of the Woodruff Cup winner is based on multi-year growth metrics, including traditional financial growth and operating metrics as well as safety and environmental metrics. Our corporate geographical executive leadership and employees in the winning geographical business unit and all the qualifying geographical business units receive awards through our employee appreciation platform, as well as funding for a celebration event for the winning business unit and trophies for the associated bottling partners.</td>
<td></td>
</tr>
<tr>
<td>Effluent quality improvements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior change related indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply chain engagement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing access to workplace WASH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-related community project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, please specify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water replenish target</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other non-monetary reward

Other, please specify Regional technical and sustainability managers and associates	Reduction of water withdrawals	TCCC and its bottling partners have internal awards to recognize employees and project teams across The Coca-Cola System who achieve energy efficiencies, emissions reductions and internal efficiency target and emissions achievements as part of their personal or team performance and excellence. As an example, our Quality, Safety and Environment Pillar within our Technical function hosts an annual award, open to all employees from across the Coca-Cola System participating in relevant projects, in which 3 winning projects are chosen in the Environment category, which contribute to significant progress in achieving our 2020 environment goals. Each of our environmental goals are either directly or indirectly linked to our overall emissions reduction goal across the full value chain.
Reduction in consumptive volumes		
Reduction of product water intensity		
Efficiency project or target – direct operations		
Effluent quality improvements		
Behavior change related indicator
Supply chain engagement
Increasing access to workplace WASH
Water-related community project

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?
- Yes, direct engagement with policy makers
- Yes, trade associations
- Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?
- Good water governance and robust national and local water regulation are critical to sustainable and equitable water management and, ultimately, to our ability to manage water risk. Good policy must seek to balance the needs of many water users and interests and require multi-stakeholder engagement.
- On global level, we prioritise multi-stakeholder policy dialogue platforms like the 2030 Water Resources Group (2030 WRG), the CEO Water Mandate and regional groups like the European Water Partnership.
- Within this global context, our regulatory and policy influencing positions and behaviours on local level are guided by our global water strategy, the local Risk & Source Vulnerability assessments and Source Water Protection Plans, which emphasize stakeholder engagement and transparency.
- We ensure consistency of our actions in a number of ways:
- Organisational integration of water leadership and Public Policy into one function through the business
- A culture of sharing and alignment across the function worldwide and across the system (i.e. between the company and bottlers)
- An effective internal governance through a cross-functional team, comprising of key functions (Public Policy, Sustainability, Legal, Technical, Franchise bottling partners etc)

 If inconsistencies are discovered, the global lead for water will convene the appropriate representatives across functions and business units (geographies), and coordinate the appropriate actions, supported by senior leadership.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

 Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Water is the first ingredients in our products, key to their production and the ingredients we use. Our global franchise system depends on 900+ operations in more than 200 countries and territories, which makes local water availability critical to our business. In our long-term business objectives, water availability and management play an important role. We have a 15 year legacy of comprehensive water risks assessment and strategy frameworks and we are currently reviewing our tools to further build our knowledge for the future.</td>
</tr>
</tbody>
</table>
Our business processes and operational requirements for the entire system provide detailed requirements for water efficiency, treatment, management, source vulnerability etc. into the fundamental way of doing business.

Our global system objective replenishing 100% of the water we use back in nature and communities as well as improving water efficiency by 25% (2010-2020) drives resource allocation and annual business planning.

We set and review annual targets against these two metrics as well as monitor and report as a global system, as well as actively engage on all areas of water management and policy building through partnership and collaboration with our technical functions and bottling partners to drive progress at our bottling facilities.

We are also in the process of developing our post-2020 water strategy. As part of our M&A guidance, we also integrate water into the forward looking business growth plans.

<table>
<thead>
<tr>
<th>Strategy for achieving long-term objectives</th>
<th>Yes, water-related issues are integrated</th>
<th>11-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>As a system, our long-term strategic framework 2010-2020 focuses our water stewardship efforts on the key strategic areas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Manufacturing facility performance (efficiency, reuse, stormwater management, and wastewater treatment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Watershed protection/ Sustainable communities through 100% water use replenishment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Raising global awareness and action around water challenges/ Engagement on water policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Integration of water resource management in our agricultural ingredient supply chain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on the matrix of solutions derived from the findings of these assessments, as well as the required resources, support and tools to implement the solutions, each business unit and bottling partner develops a strategy for achieving our targets over the long-term.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Financial planning Yes, water-related issues are integrated 11-15

Our current 2020 water strategy is built on a comprehensive understanding of our water risks and prioritisises actions to address risks and leverage opportunities. For example, our work to improve water efficiency and wastewater treatment in our sites takes into account investment costs but also a broad view on return on investment, including financial, reputational and supply security factors.

Overall, our water strategy and implementation governance ensures the planning for appropriate financial resources required to integrate strategy implementation into the respective business unit or bottling partner’s annual business plan. These are prepared by the countries and Business units on an annual basis taking into account reported performance and agreed targets, and build up to a global business and financial plan.

W7.2
(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

<table>
<thead>
<tr>
<th>Water-related CAPEX (+/- % change)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td>Water-related OPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td>Anticipated forward trend for OPEX (+/- % change)</td>
<td>0</td>
</tr>
</tbody>
</table>
Please explain

Financial performance across our business, including profit / loss and assets / liabilities, along with prior year comparisons / changes, are reported to investors in annual reports and required SEC filings. Please refer to http://www.coca-cola.com/our-company/company-reports. Also, our wastewater treatment commitment is game-changing for our business and our industry in general. Together with our bottling partners, we have invested more than $1 billion over the past decade to align our global system with our ambitious internal standards.

W7.3

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In 2018, building on our work with BSR in 2016/17 to create a framework for climate resilience at The Coca-Cola Company, we conducted a thorough climate-related risk priority assessment. The assessment was conducted in partnership with DNV GL and Coca-Cola European Partners and was conducted in alignment with the recommendations of the Taskforce for Climate-related Financial Disclosures. It assessed Acute physical, Chronic physical and Transitional risks across a 10-year timescale, through a host of internal and external information and interviews, and identified both a BAU and 2 degree scenario for scenario analysis.

W7.3a

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes

W7.3b

(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization’s response?

<table>
<thead>
<tr>
<th>Climate-related scenario(s)</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
</table>
The identified priority climate-related risks are split between the two scenarios. In a "BAU" world, the following are the top priority risks:
- Changes to weather and precipitation patterns limiting the availability of ingredients and raw materials
- Extreme weather events disrupting production and limiting distribution
- Water scarcity disrupting sourcing and/or production
In a "2-Degree" world, the following are considered the primary risks, as well as some of the above risks, to a lesser degree, continuing to have impacts:
- GHG and/or water regulations increasing COGS (GHG) or disrupting production (Water)
- Changes to consumer perceptions affecting corporate reputation

At this time, we have completed an assessment of the top priority risks against the two scenarios (BAU and 2-degrees), and the results are summarized in the top priority risks listed above. Additionally, we have conducted some high-level financial modeling to assess the potential cost impacts of these risks to the business using (where available and appropriate), the numbers contained within the respective scenarios. These are listed in Question 2.3.

The exercise has informed not the development of a global enterprise risk management framework, including the impact of climate-related events as a key input to the suite of business risks across the enterprise. Additionally, the focus on water-related impacts under the BAU scenario has helped establish a clear link to our global water sustainability strategy.

Specifically, as a result of this insight above, we expect that our water sustainability strategy over the coming years will begin to feature climate resilience as a key pillar.

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?
No, but we are currently exploring water valuation practices.

Please explain

As one of 16 public and private partner organizations, we are supporting work on the Cedar River in Iowa to quantify how better watershed management upstream can provide improved water quality to communities downstream. This involves cutting-edge scientific analysis of best management practices to ensure project investment achieves the most impact.

We’re also aiming to integrate the frontline methods of natural capital and ecosystem services to better understand the benefits of different types of water resource interventions and better evaluate and target investment and engagement in the future.

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company-wide targets and goals</td>
<td>Targets are monitored at the corporate level</td>
<td>We have identified areas of strategic importance to the company, in which we are positioned to make substantive impact:</td>
</tr>
<tr>
<td>Business level specific targets and/or goals</td>
<td>Goals are monitored at the corporate level</td>
<td>- Manufacturing facility performance (efficiency, reuse, stormwater management, and wastewater treatment)</td>
</tr>
<tr>
<td>Site/facility specific targets and/or goals</td>
<td></td>
<td>- Water resource management in our agricultural ingredient supply chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Watershed protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sustainable communities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Raising global awareness and action around water challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Engagement on water policy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In order to progress against these strategic areas, we have 2 overarching 2020 goals for the global Coca-Cola Company:</td>
</tr>
</tbody>
</table>

Classified - Confidential
Cola System related to water.
Replenish: By 2020, safely return to communities and nature an amount of water equal to what we use in our finished beverages and their production.
Efficiency: By 2020, improve water efficiency in manufacturing operations by 25% compared with a 2010 baseline.
We continue to monitor and report against these two metrics as a global system, as well as actively engage on all areas indicated above.

In addition, within our supply chain, we set a goal to sustainably source our priority ingredients by 2020. Priority ingredients include cane and beet sugar, high fructose corn syrup, stevia, tea, coffee, oranges, lemons, grapes, apples, mangos, pulp and paper fiber for packaging, palm oil and soy.

Finally, our goal to reduce the carbon footprint of the "Drink in Your Hand" by 25% between 2010 and 2020 is another sustainability goal which is intricately linked to the impacts of water and vice versa.

As these are Coca-Cola system-wide goals, they apply both to our direct Company-owned operations and our supply chain, which includes our franchise bottling partners and ingredients supply chain.

Each business unit is responsible for working together with the local bottling partner to establish appropriate local goals, in line with global targets. Goal-setting, tracking and monitoring is conducted through internal dashboards and monitoring calls and processes hosted by the sustainability governance function.

W8.1a

(W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made.

Target reference number
Target 1

Category of target
Water use efficiency

Level
Company-wide

Primary motivation
Risk mitigation

Description of target
By 2020, we aim to reduce our water-use ratio while growing our unit case volume, with a target to improve water efficiency by 25 percent over 2010 levels.

This target applies across all of our more than 800 bottling plants globally, including those at our franchise bottling partners. The metric is the global average volume of water used in production per unit volume of final product produced.

Quantitative metric
% reduction in total water withdrawals

Baseline year
2010

Start year
2011

Target year
2020

% achieved
66
Please explain

In 2018, our water efficiency improved for the 16th consecutive year, 17 percent improvement over 2010, and a 30 percent improvement since 2004.

In 2004, we were using 2.7 liters of water to make 1 liter of product. That means that 1 liter of water was in the product and another 1.7 liters was used in the manufacturing process, mostly for keeping equipment clean. At the end of 2018, we were using 1.89 liters of water to make 1 liter of product, with the goal to reduce it to 1.7 liters of water by 2020. Through improved water-use efficiency, system-wide we can save around US$1 billion (cumulative 2011 through 2020) in water acquisition, internal handling and discharge fees.

Target reference number
Target 2

Category of target
Water pollution reduction

Level
Company-wide

Primary motivation
Water stewardship

Description of target

We set an industry leading system-wide goal to require all of our plants to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, even when not required or requested by local governments and communities. In many cases, this goal drove our bottling plants to adopt processes and technologies for comprehensive wastewater treatment within our facilities – a sizeable commitment and investment of approximately $1 billion across our system.

This intense focus has moved wastewater treatment from a goal to a standard operating requirement adopted by the Coca-Cola system. We continue to strive for full compliance with our stringent internal guidelines, as new facilities are constructed or join our system through acquisitions, as well as in existing facilities.
Quantitative metric

Other, please specify
Number of sites compliance to global standard

Baseline year
2010

Start year
2010

Target year
2100

% achieved
99

Please explain
Out of 804 Coca-Cola system facilities, there are four facilities in areas of civil strife where we are currently unable to construct a wastewater treatment plant, three wastewater treatment plants are under design and construction, and two are in the planning phase. We are working with noncompliant plants to ensure they are able to align as local conditions allow and supporting their adoption of standards and upgrades their systems require. Having only nine noncompliant plants is a considerable win for our system and for the environment with 173 billion liters of water being fully treated and returned directly from our bottling plants, all over the world. In many places, our wastewater treatment was one of the first and sometimes still one of few in a given country.

Target reference number
Target 3

Category of target
Watershed remediation and habitat restoration, ecosystem preservation
Level
Company-wide

Primary motivation
Water stewardship

Description of target
Water is needed to grow our agricultural ingredients. It is used in manufacturing and essential in our products. And it is a shared resource. Adequate, clean freshwater is vital to our consumers and the communities they live in. In 2007, we set our goal to replenish 100% of the water used in our finished beverages back to communities and nature, by 2020.

To meet target, we worked with many charities and conservation organisations, supported 248 community water partnership projects in 71 countries and over 2,000 communities. These numbers continue to grow today, 3 years after meeting our target. Projects focus on:
- Access to safe water and improved sanitation (e.g. water collection, storage, purification, and septic systems) accounting for 6% of projects;
- Protecting watersheds (e.g. conserving or restoring water quantity or quality) accounting for 79% of projects;
- Water for productive use (e.g. rainwater harvesting or water for irrigation) accounting for 15% of projects.

Quantitative metric
Other, please specify
Replenish 100% of the water used in our finished beverages back to communities and nature

Baseline year
2007

Start year
2008

Target year
2020

% achieved
Please explain
In 2018, the Coca-Cola system (the Company and our bottling partners), continued to achieve our goal to replenish 100 percent of the water we use in our finished beverages back to communities and nature by 2020, a goal we first met five years early in 2015. Projects implemented by the end of 2018 are replenishing an estimated 257 billion liters per year through community and watershed projects globally, as estimated with the help of our many reputable partner organizations using peer reviewed scientific and technical methods.

W8.1b

(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Watershed remediation and habitat restoration, ecosystem preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Motivation</td>
<td>Water stewardship</td>
</tr>
</tbody>
</table>

Description of goal

Water is needed to grow our agricultural ingredients. It is used in manufacturing and essential in our products. And it is a shared resource: Adequate, clean freshwater is vital to our consumers and the communities they live in.

Over a decade ago, we established our water leadership framework of Protect, Reduce, Recycle, Replenish and set our goal to replenish 100% of the water used in our finished beverages back to communities and nature, by 2020.

In working to meet this target, we worked with a host of different charities and conservation organisations, we supported 248 community water partnership projects in 71 countries and over 2,000 communities, and these numbers continue to grow today, 3 years after meeting our target. Projects focus on:
- Access to safe water and improved sanitation (includes water collection and storage facilities, purification processes, and septic systems) accounting for 6% of projects;
- Protecting watersheds (includes conserving or restoring water quantity or quality) accounting for 79% of projects; and
- Providing water for productive use (includes projects such as rainwater harvesting or water for irrigation) accounting for 15% of projects.

Projects are conducted with the expertise and support of many critical partners such as World Wildlife Fund (WWF), USAID, The Nature Conservancy, Water For People, Water and Sanitation for the Urban Poor (WSUP), Global Water Challenge, UN-HABITAT, and the United Nations Development Programme (UNDP).

Baseline year
2007

Start year
2008

End year
2020

Progress
Our measure for progress on this goal is the % of the volume of water we use each year in our finished beverages and their production, that we are able to return safely to communities and nature. Achievement for this goal is in reaching 100%. We have worked closely together with external partners and assurance providers to ensure the viability of our calculation methodology in tracking this metric. Please see further descriptions below.

In 2015, we were able to achieve our Replenish target early (i.e. surpass 100%) at 191 billion liters replenished(115%) and have continued to improve on that number. In 2018, we replenished 257 billion liters of water, which amounts to 155% of what we use in our finished beverages and their production. As reference, our numbers in 2009, just after we began this journey, was at 22%.

The Nature Conservancy, with support from LimnoTech and the Global Environment & Technology Foundation, helped us develop methodologies to calculate the volume of water we have replenished using an approach based on widely accepted tools and methodologies. A joint, peer-reviewed paper explaining this context and application can be found on our website at:
Goal
Promotion of sustainable agriculture practices

Level
Company-wide

Motivation
Risk mitigation

Description of goal
Ingredients are at the heart of our products, and our transformation into a total beverage company is also expanding the variety of ingredients we use. We source a wide range of agricultural commodities—including fruit juices, coffee, tea, sugar and soy, as well as special ingredients such as herbs and dairy-based ingredients—from a complex supply chain that spans the globe. Ensuring that these ingredients are produced in a way that respects farmworkers and communities and protects natural resources is a top priority for our company.

Given that, for some of our products, 80% of the water usage originates in the agricultural supply chain, responsible and sustainable practice for water usage and management in the agricultural supply chain is a critical component of the sustainability of these ingredients.

Within our supply chain, we set a goal to sustainably source all (100%) of our priority ingredients by 2020. Priority ingredients include cane and beet sugar, high fructose corn syrup, stevia, tea, coffee, oranges, lemons, grapes, apples, mangos, pulp and paper fiber for packaging, palm oil and soy. The measure by which we track and monitor our progress is through certification with third party platforms that are proven to comply with and promote the necessary practices to achieve our sustainability ambitions, as well as our Sustainable Agriculture Guiding Principles, a
comprehensive set of principles to which all suppliers are required compliance.

Baseline year
2013

Start year
2014

End year
2020

Progress
This goal is measured by the % of our sourcing that is certified to be sustainable, through our approved list of certifications. In 2018, we continue to work towards 100%. We sourced more than 2 million tons of more sustainable sugar (cane, beet and corn/high fructose starch syrup); continued to procure nearly 100 percent of our globally sourced coffee and tea from more sustainable sources; sourced 25-50 percent more sustainable grapes; and around 90 percent of our juice supply internationally was on step 3, “Path Selection” of the Supplier Engagement Program, meaning the supplier has selected a path for validation (i.e., external certification or third-party audit) positioning it on a more sustainable pathway for 2020. And, by the end of 2017, more than 50 percent of our key ingredient supply in total had identified a validation path for compliance with our Supplier Engagement Program, placing it at step 3 or beyond.

When it comes to our top five agricultural spend ingredient crops—cane sugar, beet sugar, corn, oranges and lemons—we have realized both successes and challenges. As of the end of 2018, less than 25 percent of our cane sugar and corn were validated, while 26-50% of our oranges were and 51-75 percent of our lemons and beet sugar were. Challenges we have faced include regulated markets with little sustainability traction, social issues at the farm level, and limited knowledge of sustainability practice by and fragmentation of smallholder farmers.
W9. Linkages and trade-offs

W9.1

(W9.1) Has your organization identified any linkages or tradeoffs between water and other environmental issues in its direct operations and/or other parts of its value chain?

Yes

W9.1a

(W9.1a) Describe the linkages or tradeoffs and the related management policy or action.

<table>
<thead>
<tr>
<th>Linkage or tradeoff</th>
<th>Type of linkage/tradeoff</th>
<th>Description of linkage/tradeoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased GHG emissions</td>
<td></td>
<td>Within our value chain, product ingredients account for roughly a quarter of our GHG emissions, of which the overwhelming majority are agricultural ingredients. The benefit of effective water management and agro-ecological practices at farms on our value chain GHG emissions are an additional driver for us to engage with suppliers and the farming community. For example, according to Bonsucro, one of our value chain partners for certifying cane sugar, approximately, 1.3 million tonnes of CO2e were avoided vs. 2013 levels through this initiative. We aim to continue increasing the volume of ingredients we source that are certified through these initiatives or apply such practices (2 million tons in 2017).</td>
</tr>
</tbody>
</table>
Policy or action

Within our GHG emissions and climate protection strategy, we spell this activity out as a key driver for further reducing our emissions towards our target and prioritize actions and interventions. Our ingredients constitute 20 - 25% of our carbon footprint across the value chain. We will continue to measure the impact of these programs on GHG emissions through LCAs and other studies that research the benefits of improved agro-ecological practices on GHG emissions.

Through our sustainable agriculture program and our work with certification programs such as Bonsucro, or our work with farmers through multi-stakeholder initiatives in locations such as Spain, we understand that the improved agro-ecological practices and water management at farms results in the reduction of GHG emissions through, for example, reduced use of fertilizers and improved yields.

We have worked extensively with Bonsucro members to create the first global metric standard for sustainable sugarcane production and was the first to purchase Bonsucro-certified sugar in 2011. The Company also achieved Bonsucro Chain of Custody Standard certification. In October 2015, we received the 2015 Bonsucro Sustainability Award for Buyers Supporting Transformational Change. The award recognizes our efforts to support critical and progressive advancements in the sugarcane sector. In 2017, we continue to make progress through our various partnerships, sourcing more than 2 million tons of more sustainable sugar or HFCS.

W10. Verification

W10.1

(W10.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1d)?

Yes

W10.1a

(W10.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classified - Confidential
W8. Targets 8.1a - Water Use Ratio 8.1a - Water Replenish Other, please specify AICPA

Water use ratio (efficiency) is defined as liters of water used per liter of product produced. Total water used is the total of all water used by the Coca-Cola system in all global production facilities and co-located distribution centers, from all sources, including municipal, well, surface water, and collected rain water. This includes water used for: production; water treatment; boiler makeup; cooling (contact and non-contact); cleaning and sanitation; backwashing filters; irrigation; washing trucks and other vehicles; kitchen or canteen; toilets and sinks; and fire control. This does not include return water or non-branded bulk water donated to the community. Liters of product produced include all production, not just saleable products.

The intent of the replenish program is to develop a global portfolio of Community Water Partnership (CWP) projects that yield an annual volumetric water benefit equivalent to the company’s annual global sales volume. Water replenish is defined as the ratio of water safely provided to communities and to nature by the community water partnership portfolio divided by sales volume of company beverage products as disclosed in the 2018 10-K (refer to Note B). Volumetric project benefits are quantified using TCCC’s peer reviewed methodology as outlined in the Corporate Water Stewardship: Achieving a Sustainable Balance paper published in the Journal of Management and Sustainability in November 2013.

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

None

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.
W11.2

(W11.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

No

SW. Supply chain module

SW0.1

(SW0.1) What is your organization’s annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
<tr>
<td>31,856,000,000</td>
</tr>
</tbody>
</table>

SW0.2

(SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP?

No

SW1.1

(SW1.1) Have you identified if any of your facilities reported in W5.1 could have an impact on a requesting CDP supply chain member?

We do not have this data but we intend to collect it within two years
SW1.2

(SW1.2) Are you able to provide geolocation data for your site facilities?
No, not currently but we intend to provide it within the next two years

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?
No

SW3.1

(SW3.1) Provide any available water intensity values for your organization’s products or services across its operations.

Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP
<table>
<thead>
<tr>
<th>I am submitting my response</th>
<th>Public</th>
<th>Investors</th>
<th>Customers</th>
<th>Yes, submit Supply Chain Questions now</th>
</tr>
</thead>
</table>

Please confirm below
- I have read and accept the applicable Terms