The Coca-Cola Company - Water Security 2023

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

The Coca-Cola Company (the “Company”) is a total beverage company with products sold in more than 200 countries and territories. Our Company’s purpose is to refresh the world and make a difference.

We are a networked global organization designed to combine the power of scale with the deep knowledge required to win locally. We have global reach with local focus because of the strength of the Coca-Cola system, which comprises our Company and our approximately 200 bottling partners worldwide. We own or license and market numerous beverage brands, which we group into the following categories: Trademark Coca-Cola; sparkling flavors; water, sports, coffee and tea; juice, value-added dairy and plant-based beverages; and emerging beverages. We make our branded beverage products available to consumers throughout the world through our network of independent bottling partners, distributors, wholesalers and retailers as well as our consolidated bottling and distribution operations. The countries listed under question W0.3 are those countries in which The Coca-Cola Company or its bottling partners owns and operates production facilities.

Our Company markets, manufactures and sells:

• beverage concentrates, sometimes referred to as “beverage bases,” and syrups, including fountain syrups (we refer to this part of our business as our “concentrate operations”); and

• finished sparkling soft drinks and other beverages (we refer to this part of our business as our “finished product operations”)

Together with our 200 bottling partners and contract manufacturers, our products are produced at around 950 production facilities.

Our sustainability goals are embedded in how we operate as a business. In everything we do, we aim to create a more sustainable business and better shared future that make a difference in people’s lives, the communities we serve and the planet. We recognize that the sustainability of our business is directly linked to the communities and ecosystems in which we operate, and that is why our approach is guided by our purpose: to refresh the world and make a difference.

Our sustainability priorities cover the following areas: water stewardship; reducing added sugar; packaging; climate; sustainable agriculture; and people and communities. Through internal and external stakeholder engagement, we have identified the highest-priority issues for the Company, allowing us to grow our business while mitigating risk. Working collaboratively with our bottling partners and stakeholders at every stage of our value chain, we look to integrate sustainability considerations into our daily actions.

The data presented in this report is collected using accepted and relevant scientific and industry accepted methodologies, which are based on assumptions, estimates and extrapolations. There are inherent uncertainties and limitations in the collection and presentation of our data. For example, certain information in this report regarding the Coca-Cola system comes from third-party sources and operations outside of our control. While we believe such information is reasonably accurate and is based on generally accepted principles and methodology, the collection of this data is beyond our direct influence. In addition, in some instances, we have extrapolated to estimate data that is unavailable.

In this report, any use of the terms “material,” “materiality,” “immaterial,” “substantive,” “significant” and other similar terminology refers to topics that reflect important economic, environmental and social impacts of The Coca-Cola Company or the Coca-Cola system or to topics or standards designated as “material” or “substantive” under the GHG Protocol, GRI or SASB standards. These terms as used in this report are not used, or intended to be construed, as they have been defined by or construed in accordance with the securities laws or any other laws of the United States or any other jurisdiction, or as these terms are used in the context of financial statements and financial reporting.

This report may contain statements, estimates or projections that constitute “forward-looking statements” as defined under U.S. federal securities laws. Generally, the words “believe,” “expect,” “intend,” “estimate,” “anticipate,” “project,” “will” and similar expressions identify forward-looking statements, which generally are not historical in nature. Forward-looking statements provide current expectations of future events based on certain assumptions and include any statement that does not directly relate to any historical or current fact. Forward-looking statements are not guarantees of future performance and are subject to certain risks and uncertainties that could cause The Coca-Cola Company’s actual results to differ materially from its historical experience and our present expectations or projections. We assume no obligation to revise or update any information included in this submission.

W-FB0.1a/W-AC0.1a
Which activities in the food, beverage, and tobacco and/or agricultural commodities sectors does your organization engage in?

Processing/Manufacturing
Distribution

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2022</td>
<td>December 31 2022</td>
</tr>
</tbody>
</table>

(W0.3) Select the countries/areas in which you operate.

Afghanistan
Albania
Algeria
Angola
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bhutan
Bolivia (Plurinational State of)
Bosnia & Herzegovina
Botswana
Brazil
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Canada
Chile
China
China, Macao Special Administrative Region
Colombia
Comoros
Congo
Costa Rica
Côte d'Ivoire
Croatia
Curacao
Cyprus
Czechia
Democratic Republic of the Congo
Denmark
Djibouti
Dominican Republic
Ecuador
Egypt
El Salvador
Eritrea
Estonia
Eswatini
Ethiopia
Fiji
Finland
France
French Polynesia
Gabon
Georgia
Germany
Ghana
Greece
Grenada
Guatemala
Guinea
Guyana
Haiti
Honduras
Hong Kong SAR, China
Hungary
Iceland
India
Indonesia
Iran (Islamic Republic of)
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kuwait
Kyrgyzstan
Lao People's Democratic Republic
Latvia
Lebanon
Liberia
Libya
Lithuania
Luxembourg
Malawi
Malaysia
Maldives
Malti
Martinique
Mauritius
Mayotte
Mexico
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Nigeria
North Macedonia
Norway
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Republic of Korea
Republic of Moldova
Réunion
Romania
Rwanda
Saint Lucia
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Somalia
South Africa
Spain
Sri Lanka
W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.

USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Other, please specify (Entities over which we have operational control, as well as independent franchise bottlers)

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

Yes

W0.6a

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water use at sales and management offices or warehouse operations.</td>
<td>Water use at offices, distribution centers and warehouse operations is excluded from our reporting because it has no significant impact on our overall water withdrawal. It is about less than 2% of total water usage and is considered insignificant compared to water usage at our production facilities. However, our reporting system is expected to undergo several developments in the near future and the exact volume withdrawn by sales and management offices and warehouse operations will be reported from then on.</td>
</tr>
<tr>
<td>Water use at recently acquired facilities</td>
<td>TCCC provides a reasonable time period before including newly acquired facilities in the organizational reporting boundary. This allows for the implementation of data collection policies and procedures. In general, newly acquired facility emissions will be included within the first two calendar years that operational water data are available. An exception has been granted for our January 2019 acquisition of Costa Limited, which includes retail and roasteries, for which additional time has been allowed. Water use from Costa Ready-to-Drink products at TCCS facilities are already included in reported water use.</td>
</tr>
</tbody>
</table>

W0.7

(W0.7) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization.</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, an ISIN code</td>
<td>US1912161007</td>
</tr>
</tbody>
</table>

W1. Current state
W1.1 Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Sufficient amounts of good quality freshwater available for use</th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital</td>
<td>Vital</td>
<td>Direct Use: As a beverage company, access to sufficient amounts of high-quality freshwater is vital to the long-term sustainability of our company. A large proportion of our revenue is directly tied to products that require water as a critical ingredient and water is essential to our operational processes, used in each step of production, including cleaning, heating and cooling. As we continue to grow our business and increase sales of our products, the amount of our revenue dependent on water will increase and so our future water dependency will also continue to increase. However, with continued efforts to reduce our water usage through increased water efficiency and reuse, we aim to decouple volume growth from water use as much as possible.</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Important</td>
<td>Indirect Use: Good quality water is vital to ensuring a sustainable supply of the agricultural ingredients, packaging, and other key materials we use in our products. From the 2020 enterprise water footprint assessment across our value chain, we know that approximately 95% of the total water footprint of our products comes from agricultural commodities across our supply chain; with corn sugar, cane sugar, and orange juice accounting for the most significant portion. We also recognize that access to safe water for drinking and sanitation is essential to the communities where we operate and across our value chain. Our plans to diversify our portfolio and increase volumes in products such as tea, coffee, dairy, fruit and nuts will likely increase our future water dependency in indirect usage, as these ingredients are often highly water intensive. Through our water replenish projects with farmers to improve productive use of water and our sustainable agriculture program, we will continue to work with our agriculture supply chain to improve water management practices and water efficiency.</td>
<td></td>
</tr>
</tbody>
</table>

W-FB1.1a/W-AC1.1a Which water-intensive agricultural commodities that your organization produces and/or sources are the most significant to your business by revenue? Select up to five.

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>% of revenue dependent on these agricultural commodities</th>
<th>Produced and/or sourced</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>61-80%</td>
<td>Sourced</td>
<td>In addition to water, the principal raw materials used in our business are nutritive and non-nutritive sweeteners. In the United States, for example, the principal nutritive sweetener is high fructose corn syrup (“HFCS”), which is nutritionally equivalent to sugar. The principal nutritive sweetener used by our business outside the United States is sucrose, i.e., refined sugar from sugar cane or beet. Our selection of “sugar” above represents a combination of both HFCS, and sucrose as described here. The nutritive sweeteners used in the finished products are purchased, in some cases by TCCC and in other cases by our independent bottling partners. This split of nutritive sweetener sourcing notwithstanding, 61-80% of our revenue is dependent upon this agricultural commodity.</td>
</tr>
<tr>
<td>Other crop commodity, please specify (Orange)</td>
<td>Less than 10%</td>
<td>Sourced</td>
<td>In 2022, products containing orange juice (the largest volume of fruit we source by far) accounted for less than 10% of our revenue. Most of our orange juice is procured by a central procurement team, sometimes together with our independent bottling partners.</td>
</tr>
</tbody>
</table>

W1.2 Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Frequency of measurement</th>
<th>Method of measurement</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>Monthly</td>
<td>This is typically measured either periodically through site meter readings or through calculations. All of the approximately 700 facilities owned by either The Coca-Cola Company or our franchise bottling partners are required to report total water withdrawal volumes (total water use). All manufacturing facilities are required to report into our internal database on a monthly basis based on The Coca-Cola Company internal reporting standards. However, many operations have more frequent monitoring. This data point is a key input to monitor our performance against multiple operational global metrics, including our total water use and water usage ratio. In addition, it is a key input for water risk assessments together with other water datasets i.e. water stress. We use extrapolation to approximate the water withdrawal of approximately 250 facilities owned and operated by contract manufacturer used for the production of our products.</td>
<td></td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>Monthly</td>
<td>This is typically measured using either periodic site meter readings or through calculation, then allocate these volumes by source within our internal database. The allocation of these volumes is reported annually as the source of the operations is stable and not expected to change frequently. All of the approximately 700 facilities owned by either The Coca-Cola Company or our franchise bottling partners are required to report total water withdrawal volumes (total water use). Many operations have more frequent monitoring than monthly. This data point is a key input to monitor our performance against multiple operational global metrics, including our total water use and water usage ratio. In addition, it is a key input for water risk assessments together with other water datasets i.e. water stress. We use extrapolation to approximate the water withdrawal by source of approximately 250 facilities owned and operated by contract manufacturer used for the products.</td>
<td></td>
</tr>
<tr>
<td>% of sites/facilities/operations</td>
<td>Frequency of measurement</td>
<td>Method of measurement</td>
<td>Please explain</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Entrain water associated with your oil gas sector activities - total volumes (only oil gas sector)</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced water associated with your oil gas sector activities - total volumes (only oil gas sector)</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>100%</td>
<td>Yearly</td>
<td>This is typically measured through water sampling and testing for raw water (incoming water quality) based on the Coca-Cola Company internal standards and specifications.</td>
</tr>
<tr>
<td>Water discharges - total volumes</td>
<td>100%</td>
<td>Monthly</td>
<td>All of the approximately 700 facilities owned by either The Coca-Cola Company or our franchise bottling partners are required to report water discharge volumes. All facilities are required to report into our internal database on a monthly basis based on The Coca-Cola Company internal reporting standards. However, many of the operations have more frequent monitoring. This data point is a key input to monitor our performance against multiple metrics, including our total water use and water discharge. Importantly, it is a key data point to monitor the impact of our wastewater discharge and monitor potential water risk. TCCC has internal standards on reporting which are checked during internal auditing process to ensure that the local facilities are executing the required data submission and accuracy. TCCC seeks to conduct these internal audits on a three-year cycle as determined by risk assessments. Additionally, each year total water discharge data is checked for accuracy and plausibility.</td>
</tr>
<tr>
<td>Water discharges - volumes by destination</td>
<td>100%</td>
<td>Yearly</td>
<td>All of the approximately 700 facilities owned by The Coca-Cola Company or our bottling partners are required to report water discharge. Water discharge volume data is collected monthly and the allocation by destination is reported annually. However, many operations have more frequent monitoring. This is an additional data point for monitoring our performance against multiple metrics, including our total water use and water discharge. Importantly, it is a key data point to monitor the impact of our wastewater discharge and monitor potential water risk. TCCC has internal standards on reporting which are checked during internal auditing process to ensure that the local facilities are executing the required data submission and accuracy. TCCC seeks to conduct these internal audits on a three-year cycle as determined by risk assessments. Additionally, each year total water discharge data is checked for accuracy and plausibility.</td>
</tr>
<tr>
<td>Water discharges - volumes by treatment method</td>
<td>100%</td>
<td>Monthly</td>
<td>All of the approximately 700 facilities producing for The Coca-Cola Company or our franchise bottling partners are required to report water discharge volumes by treatment method. All facilities are required to report into our internal database on a monthly basis based on The Coca-Cola Company internal reporting standards. However, many of the operations have more frequent monitoring. This is an additional data point for monitoring our performance against multiple metrics, including our total water discharge and water discharge by treatment method. It is also a key data point to understand the state and performance of wastewater treatment within our system and to stay abreast of any potential risks or issues.</td>
</tr>
<tr>
<td>Water discharge quality - by standard effluent parameters</td>
<td>100%</td>
<td>Quarterly</td>
<td>Facilities may either treat wastewater prior to discharge on premises or discharge the wastewater to an acceptable third-party treatment facility. When wastewater is treated on premises, the quality of wastewater discharged is measured through periodically scheduled tests (i.e. daily, monthly, quarterly). Measurement is required across 15 parameters. They are measured through discrete grab samples using Standard Methods for Examination of Water and Wastewater.</td>
</tr>
<tr>
<td>Water discharge quality - emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Water discharge quality - temperature</td>
<td>100%</td>
<td>Quarterly</td>
<td>All of the approximately 700 facilities owned by either The Coca-Cola Company or our franchise bottling partners are required to maintain records of water discharge quality. Facilities which discharge to external treatment facilities annually evaluate those facilities to ensure they are capable of providing effective treatment. All sites are required to comply with our global standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life.</td>
</tr>
</tbody>
</table>
W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Method of measurement</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water consumption – total volume</td>
<td>100% Monthly</td>
<td>This is typically measured directly using periodic site flow meter readings where available; or may be calculated based on a mass balance approach using measurements of incoming water flow volumes and known production volume for the same time period. Water consumption is calculated using the methodology provided by GRI/CDP framework. (Water Consumption = Water Withdrawals – (minus) Water Discharge). All of the approximately 700 facilities owned by either The Coca-Cola Company or our franchise bottling partners are required to report total water withdrawals and total water discharge. All facilities are required to report into our internal database on a monthly basis based on The Coca-Cola Company internal reporting standards. However, many of the operations have more frequent monitoring. We use extrapolation to approximate the water consumption of approximately 250 facilities owned and operated by contract manufacturer discharged in the production process of our products.</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>100% Monthly</td>
<td>This is either measured directly using periodic site flow meter readings where available; or may be calculated based on a mass balance approach using measurements of incoming water flow volumes and known production volume for the same time period and also the water reuse/recycle project details. All of the approximately 700 facilities owned by either The Coca-Cola Company or our franchise bottling partners report total water recycled/reused, where applicable. Many of the operations have more frequent monitoring than monthly. This data point is an additional input to monitor our performance against some global metrics such as water consumption and water usage ratio.</td>
</tr>
</tbody>
</table>

The provision of fully functioning, safely managed WASH services to all workers 100% Other, please specify (Every 3-5 years) The company continues to be a supporting member of the WASH4WORK platform, which seeks to establish an industry-wide approach to ensuring provision of WASH to all employees. Moreover, we conduct Facility Water Vulnerability Assessments (FAWVA), a site-level internal proprietary tool, for all facilities every 3 years. This assessment covers 72 potential vulnerabilities, spread across 20 risk factors, including risks related to WASH at watershed level where the operations are located in. The provision of fully functioning and well-managed WASH services to all employees is a requirement described in our Company Operating Requirements (KORE). The latest set of FAWVAs were completed across our facilities in 2020 and validated in 2021. In addition, we have Water Resource Sustainability assessment studies again conducted at the site-level every 5 years, where the intent is to capture water-risks local risks (i.e. water stress, water quantity, water quality, WASH where and if applicable).

W1.2d

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Five-year forecast</th>
<th>Primary reason for forecast</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>308736 Higher</td>
<td>Increase/decrease in business activity</td>
<td>About the same</td>
<td>Divestment from water intensive technology/process Water withdrawal increased by approximately 3.5% vs 2021 (we consider a significance threshold of +/- 3% to indicate change). The increase was mainly driven by an increase in sales volume. Due to water efficiency measures the production volume grew faster than withdrawal. The forecasted production volume increase will be partly balanced by water efficiency measures, resulting in "about the same" total withdrawal</td>
<td></td>
</tr>
<tr>
<td>Total discharges</td>
<td>125120 About the same</td>
<td>Increase/decrease in efficiency</td>
<td>About the same</td>
<td>Increase/decrease in efficiency Increase in production volume is partly balanced by water efficiency measures resulting in “about the same” total discharge volume.</td>
<td></td>
</tr>
<tr>
<td>Total consumption</td>
<td>183616 Higher</td>
<td>Increase/decrease in efficiency</td>
<td>Higher</td>
<td>Increase/decrease in efficiency Increase of production volume vs 2021 resulted in increased water consumption. Based on the forecasted growth in production volume further increase is expected.</td>
<td></td>
</tr>
</tbody>
</table>

CDP
(W1.2d) Indicate whether water is withdrawn from areas with water stress, provide the proportion, how it compares with the previous reporting year, and how it is forecasted to change.

<table>
<thead>
<tr>
<th>Withdrawals</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Five-year forecast</th>
<th>Primary reason for forecast</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>11-25</td>
<td>Higher</td>
<td>Increase/decrease in business activity</td>
<td>Higher</td>
<td>Increase/decrease in business activity</td>
<td>WRI Aqueduct</td>
<td>In 2022, we updated our Global Water Risk Assessment using the World Resource Institute’s (WRI) Aqueduct 3.0 tool. The assessment covered all of the approximately 700 facilities owned by The Coca-Cola Company or our franchise bottling partners. We used the Aqueduct tool to overlay the system’s approximately 700 production facilities over the water risks indicators. Water Stress: Baseline water stress (1960-2014). For the purpose of this metric, we will disclose the data from this assessment for the company-owned and operated facilities. Of the company-owned facilities, we identified 21% to be located in areas of “High” or “Extremely High” baseline water stress. Baseline water stress measures the ratio of total annual water withdrawals, from industry, domestic and agricultural users, to average annual available renewable supplies. WRI used a long time series of supply (1950-2010) to reduce the effect of multi-year climate cycles and to allow us to ignore complexities of short-term water storage (e.g. dams, floodplains) for which global operational data is non-existent. Baseline water stress thus measures chronic water stress rather than drought stress, and does not include the effects of deep groundwater, water governance or infrastructure in meeting industrial, domestic and agricultural demands for water. The risk thresholds used below are according to the scoring methodology employed by WRI’s Aqueduct tool: 0-1 Low (<10%) 1-2 Low Medium (10-20%) 2-3 Medium-High (20-40%) 3-4 High (40-80%) 4-5 Extremely High (≥80%) The methodology of how we define % withdrawn from areas of high and extremely high water stress is the same as last year reporting which is by using the total withdrawals of those company-owned facilities as the denominator. Using this methodology, 21% of total water withdrawn by company-owned facilities in 2022 were in areas with a High to Extremely High baseline water stress. Considering the disproportional increase of business activity in water stressed areas such as India, it is forecasted to have a higher water withdrawal from water stressed areas.</td>
</tr>
</tbody>
</table>

W-FB1.2e/W-AC1.2e

(W-FB1.2e/W-AC1.2e) For each commodity reported in question W-FB1.1a/W-AC1.1a, do you know the proportion that is produced/sourced from areas with water stress?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>The proportion of this commodity produced in areas with water stress is known</th>
<th>The proportion of this commodity sourced from areas with water stress is known</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>Not applicable</td>
<td>Yes</td>
<td>In 2022, TCCC developed an approach to prioritize water and agriculture ambition through the following steps: 1. Identifying a subset of our Global Priority Ingredients for which water is most relevant (including sugar). Step 2. Identifying top sourcing countries for each of the global water priority ingredients. Step 3. Identifying global priority sourcing watersheds and suppliers within each of the top sourcing countries (recognizing data limitations). Step 4. Identifying a subset of global priority sourcing watersheds to integrate within our watershed stewardship goal and identify priority suppliers to engage on advanced water management practices. TCCC worked with a consulting partner to develop a method to quantify sourcing volumes facing water risk for our global water priority ingredients, which include HFCS (corn), beet sugar, and cane sugar. Because sourcing volumes for TCCC are provided per ingredient and supplier at the country-level, the methodology used spatial weights to disaggregate the volumes to a watershed-level in order to estimate the percentage of sourcing volumes within at-risk watersheds, which is best practice for identifying sourcing volumes at risk for companies that are not vertically integrated in their agricultural supply chain, and therefore have limited visibility into where ingredients are actually grown. Sourcing volumes, locations and suppliers change on an annual basis and thus the volumes, locations and suppliers assessed as part of this exercise are representative of the calendar year 2022 and may change over time. This method used TCCC Procurement data in addition to the WRI Aqueduct Tool (3.0) to determine water stressed basins, UN Food and Agriculture Organization for minor basin delineations, and global ingredient production volumes from EarthStat to identify approximate production distribution of each commodity in a country. This method did not ultimately map 100% of the volumes for each ingredient due to having incomplete procurement data or because we applied a materiality lens (minimum sourcing volumes for suppliers to be considered) or focused on top sourcing countries. However, we will work to update this analysis with more coverage in the future.</td>
</tr>
<tr>
<td>Other commodities from W-FB1.1a/W-AC1.1a, please specify (Oranges)</td>
<td>Not applicable</td>
<td>Yes</td>
<td>In 2022, TCCC developed an approach to prioritize water and agriculture ambition through the following steps: 1. Identifying a subset of our Global Priority Ingredients for which water is most relevant (including sugar). Step 2. Identifying top sourcing countries for each of the global water priority ingredients. Step 3. Identifying global priority sourcing watersheds and suppliers within each of the top sourcing countries (recognizing data limitations). Step 4. Identifying a subset of global priority sourcing watersheds to integrate within our watershed stewardship goal and identify priority suppliers to engage on advanced water management practices. TCCC worked with a consulting partner to develop a method to quantify sourcing volumes facing water risk for our global water priority ingredients, which include oranges. Because sourcing volumes for TCCC are provided per ingredient and supplier at the country-level, the methodology used spatial weights to disaggregate the volumes to a watershed-level in order to estimate the percentage of sourcing volumes within at-risk watersheds, which is best practice for identifying sourcing volumes at risk for companies that are not vertically integrated in their agricultural supply chain, and therefore have limited visibility into where ingredients are actually grown. Sourcing volumes, locations and suppliers change on an annual basis and thus the volumes, locations and suppliers assessed as part of this exercise are representative of the calendar year 2020 and may change over time. This method used TCCC Procurement data in addition to the WRI Aqueduct Tool (3.0) to determine water stressed basins, UN Food and Agriculture Organization for minor basin delineations, and global ingredient production volumes from EarthStat to identify approximate production distribution of each commodity in a country. This method did not ultimately map 100% of the volumes for each ingredient due to having incomplete procurement data or because we applied a materiality lens (minimum sourcing volumes for suppliers to be considered) or focused on top sourcing countries. However, we will work to update this analysis with more coverage in the future.</td>
</tr>
</tbody>
</table>

W-FB1.2g/W-AC1.2g
What proportion of the sourced agricultural commodities reported in W-FB1.1a/W-AC1.1a originate from areas with water stress?

Sugar

11-25

TCCC used the methodology developed with a consultant to determine percentage of commodities sourced from areas with high water stress. The methodology identified 22% of procured sugar volume (HPC5/car, cane sugar, beet sugar) was sourced from areas of high or extremely high water stress, based on the WRI thresholds. However, it’s important to note that only 84% of corn, 30% of cane sugar, and 39% of beet sugar volumes were able to be mapped using this methodology. Additional volume will be mapped in the future. Additionally, this is a snapshot in time of our sourcing regions and this information changes on an annual basis, however, water projects are medium to long-term initiatives that do not change year to year. It is hard to predict the impact of water stress on ingredient sourcing. Water stress impacts are dependent on a number of factors, for example, whether the crop is an irrigated crop or a rain-fed crop, the availability of irrigation infrastructure, as well as changing rainfall patterns. While in general, water stress is perceived to be related to lesser availability of water than needed, in some cases, we are seeing crops being impacted by too much rainfall or rainfall at an unsuitable time in the crop’s life cycle. To our knowledge, there are currently no holistic tools that exist to be able to predict the impact of relevant water stress criteria on crops that would enable risk assessment and mitigation. In the absence of these tools, we continue to work with local teams and NGO partners where possible to better understand and help manage local risks. We are using the % of oranges sourced from water stressed areas analysis to identify priority watersheds to understand and promote context-based approaches to help increase water security where it matters the most in our business, operations and supply chains. Our objectives are to promote advanced water management practices with suppliers providing global water priority ingredients grown in watersheds identified as facing high to extremely high water stress, and as part of TCCC’s goal to replenish 100% of water used in finished beverages, implement projects in high stress watersheds to support sustainable agriculture projects with improvements in water use. This work at the local watershed level will contribute to the achievement of one of our 2030 high level targets: Improve the health of 66 watersheds identified as most critical for our operations and agricultural supply chain by 2030.

Other sourced commodities from W: FB1.2a/W-AC1.2b, please specify (Oranges)

11-25

TCCC used the methodology developed with a consultant to determine percentage of commodities sourced from areas with high water stress. The methodology identified 21% of procured orange volume was sourced from areas of high or extremely high water stress, based on the WRI thresholds. However, it’s important to note that 81% of orange volume was able to be mapped using this methodology. Additional volume will be mapped in the future. It’s also important to note that this is a snapshot in time of our sourcing regions and this information changes on an annual basis, however, water projects are medium to long-term initiatives that do not change year to year. It is hard to predict the impact of water stress on ingredient sourcing. Water stress impacts are dependent on a number of factors, for example, whether the crop is an irrigated crop or a rain-fed crop, the availability of irrigation infrastructure, as well as changing rainfall patterns. While in general, water stress is perceived to be related to lesser availability of water than needed, in some cases, we are seeing crops being impacted by too much rainfall or rainfall at an unsuitable time in the crop’s life cycle. To our knowledge, there are currently no holistic tools that exist to be able to predict the impact of relevant water stress criteria on crops that would enable risk assessment and mitigation. In the absence of these tools, we continue to work with local teams and NGO partners where possible to better understand and help manage local risks. We are using the % oranges sourced from water stressed areas analysis to identify priority watersheds to understand and promote context-based approaches to help increase water security where it matters the most in our business, operations and supply chains. Our objectives are to promote advanced water management practices with suppliers providing global water priority ingredients grown in watersheds identified as facing high to extremely high water stress, and as part of TCCC’s goal to replenish 100% of water used in finished beverages, implement projects in high stress watersheds to support sustainable agriculture projects with improvements in water use. This work at the local watershed level will contribute to the achievement of one of our 2030 high level targets: Improve the health of 66 watersheds identified as most critical for our operations and agricultural supply chain by 2030.

W1.2h

Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megalliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant 13048 Higher</td>
<td>Increase/decrease in business activity</td>
<td>Production increased in 2022 and therefore withdrawals from fresh surface water increased.</td>
<td></td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Relevant 4946 Lower</td>
<td>Increase/decrease in business activity</td>
<td>Production decreased in locations using brackish surface water and therefore withdrawals from this source decreased.</td>
<td></td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant 143099 Higher</td>
<td>Increase/decrease in business activity</td>
<td>Production increased in 2022 and therefore withdrawals from groundwater increased.</td>
<td></td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td>Not applicable</td>
<td>Our reporting methodology tracks groundwater withdrawal as a single source and does not differentiate between renewable and non-renewable groundwater. However, we generally do not source deep enough in any of our geographical areas to withdraw non-renewable water. Any exceptions would account for less than 1% of the system’s total water withdrawal, being non-material.</td>
<td></td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td>Not applicable</td>
<td>We do not use produced or entrained water, as this is not a sustainable source of influent water with the required levels and consistency of water quality.</td>
<td></td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant 147642 About the same</td>
<td>Not applicable</td>
<td>Although production increased overall, water withdrawals grew mainly in other sources and therefore withdrawals from third party sources remained about the same.</td>
<td></td>
</tr>
</tbody>
</table>

W1.2i

Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megalliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant 80361 Higher</td>
<td>Increase/decrease in business activity</td>
<td>Discharges to fresh surface water increased due to growth in our production volume.</td>
<td></td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Not relevant</td>
<td>Not applicable</td>
<td>The exact volume discharged to brackish surface water/seawater is not captured under our current data structure because it accounted for less than 1% of the overall volume discharged in 2022.</td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td>Not applicable</td>
<td>We only discharge to groundwater in rare cases and in compliance with local regulation. This would be less than 1% of the system’s total water discharge in 2022.</td>
<td></td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Relevant 44759 Lower</td>
<td>Increase/decrease in business activity</td>
<td>Discharges to third-party decreased due to an improved water efficiency, generating less discharged water.</td>
<td></td>
</tr>
</tbody>
</table>
(W.1.2) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Treatment Level</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison of treated volume with previous year</th>
<th>Primary reason for comparison with previous year</th>
<th>% of sites/facilities/operations this volume applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant</td>
<td>7756</td>
<td>About the same</td>
<td>Increase/decrease in business activity</td>
<td>1-10</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>71330</td>
<td>Higher</td>
<td>Increase/decrease in business activity</td>
<td>41-50</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
<td>3635</td>
<td>Much lower</td>
<td>Increase/decrease in business activity</td>
<td>1-10</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Relevant</td>
<td>1274</td>
<td>About the same</td>
<td>Increase/decrease in business activity</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Relevant</td>
<td>41124</td>
<td>Lower</td>
<td>Increase/decrease in business activity</td>
<td>51-40</td>
</tr>
<tr>
<td>Other</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>N/A</td>
</tr>
</tbody>
</table>

(W.1.3) Provide a figure for your organization’s total water withdrawal efficiency.

<table>
<thead>
<tr>
<th>Revenue (millions)</th>
<th>Total water withdrawal volume (megaliters)</th>
<th>Total water withdrawal efficiency</th>
<th>Anticipated forward trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>4300400</td>
<td>144500</td>
<td>566382.0224 / 7191</td>
<td>Our 2030 Water Strategy will continue to drive water efficiency by setting context-based targets. And we will continue to invest in water efficiency projects. Therefore, we expect our total water withdrawals will remain about the same or slight increase in the medium (1-3 years) and long-term (3-10 years), even as our production volume increases, leading to increased water efficiency.</td>
</tr>
</tbody>
</table>

Please note the water withdrawal reported here is for The Coca-Cola Company, rather than the Coca-Cola system.

(W-FB1.3/W-AC1.3) Do you collect/calculate water intensity for each commodity reported in question W-FB1.1a/W-AC1.1a?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>Water intensity information for this produced commodity is collected/calculated</th>
<th>Water intensity information for this sourced commodity is collected/calculated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>Not applicable</td>
<td>Yes</td>
<td>In 2021 and 2022, we tried to identify the top ingredients that contribute the most to our blue water footprint. Ingredient blue water intensity is driven by the amount of water required per tonne of production and is a good indicator of the potential impacts an ingredient may have at the local watershed level, and therefore of the local strategic importance of ingredients to TCCS partners, local stakeholders and communities. This helped us identify the top ingredients that are either responsible for over 1% of TCCS total blue water footprint or have a blue water intensity greater than 100 m3/TN. For each of the priority ingredients, we identified the top sourcing countries based on sourcing data from 2020. These top sourcing countries refer to: countries of strategic importance for procurement due to ongoing supplier engagements and/or business priorities, and/or countries contributing the highest volumes towards our PSA Global Priority Ingredients.</td>
</tr>
<tr>
<td>Other commodities from W: FB1.1a/W: AC1.1a, please specify (Oranges)</td>
<td>Not applicable</td>
<td>Yes</td>
<td>In 2021 and 2022, we tried to identify the top ingredients that contribute the most to our blue water footprint. Ingredient blue water intensity is driven by the amount of water required per tonne of production and is a good indicator of the potential impacts an ingredient may have at the local watershed level, and therefore of the local strategic importance of ingredients to TCCS partners, local stakeholders and communities. This helped us identify the top ingredients that are either responsible for over 1% of TCCS total blue water footprint or have a blue water intensity greater than 100 m3/TN. For each of the priority ingredients, we identified the top sourcing countries based on sourcing data from 2020. These top sourcing countries refer to: countries of strategic importance for procurement due to ongoing supplier engagements and/or business priorities, and/or countries contributing the highest volumes towards our PSA Global Priority Ingredients.</td>
</tr>
</tbody>
</table>
(W-FB1.3b/W-AC1.3b) Provide water intensity information for each of the agricultural commodities identified in W-FB1.3/W-AC1.3 that you source.

Agricultural commodities

Sugar

Water intensity value (m3/denominator)

64

Numerator: Water aspect

Total water consumption

Denominator

Tons

Comparison with previous reporting year

About the same

Please explain

The water intensity has remained the same as previous years because we do not perform an assessment every year. Changes to the water intensity of oranges are best measured not year-on-year but on longer timelines, given the speed of change.

Ingredient blue water intensity is driven by the amount of water required per tonne of production and is a good indicator of the potential impacts an ingredient may have at the local watershed level, and therefore of the local strategic importance of ingredients to TCCS partners, local stakeholders and communities. This helps us identify the priority ingredients, which includes sugar. For each of these priority ingredients, we identified the top sourcing countries based on sourcing data from 2020. We then determined the percentage of these priority commodities sourced from areas with high water stress. We used the % of global priority ingredient sourced from water stressed areas analysis to identify priority watersheds to understand and promote context-based approaches to help increase water security where it matters the most. Our objectives are to promote advanced water management practices with suppliers of global water priority ingredients grown in watershed identified as facing high to extremely high water stress, and as part of TCCC’s goal to replenish 100% of water used in finished beverages. This work at the local watershed level will help contribute to the achievement of one of our 2030 high level targets: Improve the health of 60 watersheds identified as most critical for our operations and agricultural supply chain by 2030.

Water intensity is only one data point to determine water use in agriculture. We recognize the growing of agriculture ingredients is context based, and consists of multiple issues, for example, whether the crop is rainfed or irrigated, impacts on water quality, etc. Through our 2030 water security strategy, we are, therefore, focused on identifying our most material ingredients and highest risk sourcing regions, and working with our suppliers and partners to promote a series of advanced water management practices relevant to that particular ingredient and growing context. While we anticipate that the water intensity value for our priority ingredients should decrease over time, we do not currently monitor this as a stand-alone metric or have water intensity targets for our value chain.

Agricultural commodities

Other sourced commodities from W-FB1.3/W-AC1.3, please specify (Oranges)

Water intensity value (m3/denominator)

199

Numerator: Water aspect

Total water consumption

Denominator

Tons

Comparison with previous reporting year

About the same

Please explain

The water intensity has remained the same as previous years because we do not perform an assessment every year. Changes to the water intensity of oranges are best measured not year-on-year but on longer timelines, given the speed of change.

Ingredient blue water intensity is driven by the amount of water required per tonne of production and is a good indicator of the potential impacts an ingredient may have at the local watershed level, and therefore of the local strategic importance of ingredients to TCCS partners, local stakeholders and communities. This helped us identify the priority ingredients, which includes oranges. For each of these priority ingredients, we identified the top sourcing countries based on sourcing data from 2020. We then determined the percentage of these priority commodities sourced from areas with high water stress. We used the % of global priority ingredient sourced from water stressed areas analysis to identify priority watersheds to understand and promote context-based approaches to help increase water security where it matters the most. Our objectives are to promote advanced water management practices with suppliers of global water priority ingredients grown in watershed identified as facing high to extremely high water stress, and as part of TCCC’s goal to replenish 100% of water used in finished beverages. This work at the local watershed level will help contribute to the achievement of one of our 2030 high level targets: Improve the health of 60 watersheds identified as most critical for our operations and agricultural supply chain by 2030.

Water intensity is only one data point to determine water use in agriculture. We recognize the growing of agriculture ingredients is context based, and consists of multiple issues, for example, whether the crop is rainfed or irrigated, impacts on water quality, etc. Through our 2030 water security strategy, we are, therefore, focused on identifying our most material ingredients and highest risk sourcing regions, and working with our suppliers and partners to promote a series of advanced water management practices relevant to that particular ingredient and growing context. While we anticipate that the water intensity value for our priority ingredients should decrease over time, we do not currently monitor this as a stand-alone metric or have water intensity targets for our value chain.
(W1.4) Do any of your products contain substances classified as hazardous by a regulatory authority?

<table>
<thead>
<tr>
<th>Products contain hazardous substances</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>None</td>
</tr>
</tbody>
</table>

W1.5

(W1.5) Do you engage with your value chain on water-related issues?

<table>
<thead>
<tr>
<th>Suppliers</th>
<th>Engagement</th>
<th>Primary reason for no engagement</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Other value chain partners (e.g., customers)</td>
<td>Yes</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W1.5a

(W1.5a) Do you assess your suppliers according to their impact on water security?

Row 1

Assessment of supplier impact
Yes, we assess the impact of our suppliers

Considered in assessment
Basin status (e.g., water stress or access to WASH services)
Supplier dependence on water
Other, please specify (water management practices)

Number of suppliers identified as having a substantive impact
47

% of total suppliers identified as having a substantive impact
1-25

Please explain
The approach taken in 2022 was to identify a set of our global priority ingredients for which water is most relevant. Secondly, the top sourcing countries were identified for each of the priority ingredients based on ongoing supplier engagements/business priorities, and/or countries with the highest sourcing volumes. For each country we then identified the suppliers that provide above a certain threshold sourcing volumes for the priority ingredients and that source from watersheds that face high to extremely high-water stress. All ingredient volumes were based on 2020-2021 data. Therefore, a supplier's impact as deemed as 'substantive' if they provided above the internal threshold sourcing volumes for a priority ingredient for which water is most relevant, from a top sourcing country and from watersheds that face high to extremely high-water stress. We continue to develop the process and criteria to identify suppliers with a ‘substantive impact’.

W1.5b

(W1.5b) Do your suppliers have to meet water-related requirements as part of your organization's purchasing process?

<table>
<thead>
<tr>
<th>Suppliers have to meet specific water-related requirements</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, suppliers have to meet water-related requirements, but they are not included in our supplier contracts</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W1.5c
Provide details of the water-related requirements that suppliers have to meet as part of your organization’s purchasing process, and the compliance measures in place.

Water-related requirement
Complying with a water-related certification

% of suppliers with a substantive impact required to comply with this water-related requirement
100%

% of suppliers with a substantive impact in compliance with this water-related requirement
51-75

Mechanisms for monitoring compliance with this water-related requirement
Certification

Response to supplier non-compliance with this water-related requirement
Retain and engage

Comment
The Principles for Sustainable Agriculture (PSA) are designed to encourage continuous improvement in the farming practices of our supply base and lead to more ethical and sustainable sourcing. The PSA includes the principle for “Water Management” which includes a number of water-related expectations, The PSA forms the baseline of our supplier expectations on water. We recognize that additional actions may be needed given differential exposure to water stress across our sourcing regions and supply chain, and that is why we have developed our water-agriculture framework to go above and beyond the PSA requirements based on materiality and risk. Based on the PSA framework, suppliers are designated as either a Leader, Mover or Improver. Leader standard represents supply volume verified to a company-approved, third-party validation, that is aligned with our PSA.

(W1.5d) Provide details of any other water-related supplier engagement activity.

<table>
<thead>
<tr>
<th>Type of engagement</th>
<th>Information collection</th>
</tr>
</thead>
</table>

Details of engagement
Collect water management information at least annually from suppliers

% of suppliers by number
1-25

% of suppliers with a substantive impact
100%

Rationale for your engagement
In 2022 we began approaching more than 45 suppliers of our global priority ingredients to gather data on their current water management practices, understanding of water-related risks in the regions where they source ingredients for the company and level of engagement with their supplier to manage water risks. These suppliers all provide sourcing volumes above a certain threshold for at least one of our global priority ingredients for which water is most relevant, from a top sourcing country and from watersheds that face high to extremely high-water stress. We did this because it helps us to understand and develop a baseline of supplier water management practices and identify gaps in supplier understanding of water risks and opportunities at the farm level. This information will feed into our supplier engagement strategy and collective action plan. This supplier engagement is an important part of addressing shared water challenges where it matters most to mitigate business risks, enable growth and build community and supply chain resilience. Ultimately this improves our ability to ensure a sustainable and secure supply of agricultural ingredients that is essential for us to deliver quality products.

Impact of the engagement and measures of success
The beneficial outcome of this collection of information from suppliers is that it will allow us to develop an understanding of current supplier water management practices and identify gaps in supplier understanding of water risks and opportunities at the farm level. This information will feed into our supplier engagement strategy and collective action plan. In particular, we will work with our partners to promote the understanding of water risks and opportunities at their farm supply base. The measure of success for this engagement is 100% response rate from suppliers requested to respond. We achieved an 96% supplier response rate.

Comment
None

(W1.5e) Provide details of the water-related requirements that suppliers have to meet as part of your organization’s purchasing process, and the compliance measures in place.

(W1.5) Provide details of any other water-related supplier engagement activity.
Provide details of any water-related engagement activity with customers or other value chain partners.

Type of stakeholder
Customers

Type of engagement
Innovation & collaboration

Details of engagement
Encourage stakeholders to work collaboratively with other users in their river basins toward sustainable water management

Rationale for your engagement
Coca-Cola Beverages Africa, The Coca-Cola Foundation and F&H Consultoria partnered with a key restaurant customer in Southern Africa, to improve community access to safe drinking water and health and hygiene behaviors in the village of Samora Machel, Marracuene, Mozambique. The project installed hand pumps, double dispensing tippy taps and laundry areas, engaged community leaders and trained community members on handwashing practices and its importance, established a women-led community water association to maintain the new infrastructure and provided technical training for these women on the maintenance. We chose this type of engagement because it directly addresses the needs of the community, who previously sourced water from an open well located far from the village and helps to ensure their sustainable access to safe drinking water and to have a long-term impact on communicable diseases that can result from poor hygiene practices. We engaged with the customer on this project because they directly requested support from the company to address the needs of their farm workers and their families. Many of the customers’ farm workers and their families reside in the village of Samora Machel.

Impact of the engagement and measures of success
The engagement improved sustainable access to clean drinking water and handwashing facilities and helped improve hygiene behaviors for residents of Samora Machel.

The metrics used to measure the success of the engagement were:
- # of double dispensing tippy taps built and dispersed (target was 25; project achieved 25)
- # of handpumps and laundry areas installed (target was 2; project achieved 2)
- # of women-led community water associations established to maintain tippy taps (target was 1; project achieved 1)

W2. Business impacts

(W2.1) Has your organization experienced any detrimental water-related impacts?
No

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

<table>
<thead>
<tr>
<th>Water-related regulatory violations</th>
<th>Fines, enforcement orders, and/or other penalties</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Enforcement orders or other penalties but none that are considered as significant</td>
<td>None</td>
</tr>
</tbody>
</table>

W3. Procedures

(W3.1) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

<table>
<thead>
<tr>
<th>Identification and classification of potential water pollutants</th>
<th>How potential water pollutants are identified and classified</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Row 1 Yes, we identify and classify our potential water pollutants | TCCC has requirements for influent and effluent water quality at our company-owned facilities and at those of our bottling partners, and we require strict adherence to these standards, or local regulatory standards, whichever standards are more stringent. We have a goal that all plants meet these standards to treat and return the water we use in manufacturing back to nature at a level that supports aquatic life, even when not required by local governments. The internal standards cover 11 pollutants as mandatory in all system facilities. Any legal requirements in the given geographical region to monitor additional pollutants not covered within these 11 pollutants are added to the list of mandatory pollutants to monitor. Business units are also required to assess and monitor an additional list of 9 pollutants, considering specific local circumstances. Acceptability limits are set for discharges directly to the environment following secondary treatment of the wastewater on-site. Below are a few of the pollutants whose monitoring is mandatory across all facilities in line with Standard Methods for Examination of Water and Wastewater: | <Not Applicable> CDP>
(W3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Water pollutant category
- Other nutrients and oxygen demanding pollutants

Description of water pollutant and potential impacts

The food and beverage production processes may impact the quality of the water that is ultimately discharged from our facilities. Parameters which are impacted by our manufacturing processes are monitored by our operations. Impacts could include a potential change in pH, temperature, or introduction of compounds which could increase the potential for eutrophication or algal blooms in receiving waters. This could result in impacts on aquatic and natural life across ecosystems and enter watersheds, affecting local fauna as well as broader ecosystems and human health, as well as potentially disrupting various uses of water, including industrial uses, if untreated.

Value chain stage
- Direct operations

Actions and procedures to minimize adverse impacts

- Assessment of critical infrastructure and storage condition (leakages, spillages, pipe erosion etc.) and their resilience
- Resource recovery
- Beyond compliance with regulatory requirements
- Implementation of integrated solid waste management systems
- Industrial and chemical accidents prevention, preparedness, and response
- Provision of best practice instructions on product use
- Water recycling
- Reduction or phase out of hazardous substances
- Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- Upgrading of process equipment/methods

Please explain

All facilities must treat wastewater to meet the most stringent Company or local standards. Our global standard, in simple terms, is for any effluent of a bottling facility to be at the level of quality that could support aquatic life. Generally wastewater with nutrients/oxygen demanding pollutants would be included in the results detectable through the list of procedures and parameters below. Our internal standards entail the following required plans with detailed guidelines and standards under each: Preliminary assessment including - Drainage plan, Stream Separation, Pollution prevention and Minimization. Wastewater Treatment for - Process Wastewater, Sanitary Wastewater, Onsite Septic System, Stormwater, Non-contact cooling Water Discharge and Disposal of treated waters Preventive Management - maintenance and inspection and training. The following parameters are measured for wastewater, and limits applied to each, to determine compliance with Company standards. BOD, Chlorine, Color, Fecal coliform, Nitrogen, Total suspended solids, Temperature variation, Ammonia, total Dissolved oxygen pH level, and Phosphorus. Each facility is required to discharge wastewater at allowable contamination levels for supporting aquatic life, by complying with the thresholds for each of the parameters outlined above, and success is measured through % compliance in regular audits by our internal technical functions, and when any contravention is discovered, by addressing these immediately.

Water pollutant category
- Nitrates

Description of water pollutant and potential impacts

Fertilizer is used in our supply chain to grow agricultural commodities such as sugar beet and cane sugar, coffee, tea, juices, and others. Potential pollutants impacting water quality include ammonia and nitrates, two of the key pollutants outlined in The Coca-Cola Company’s Internal Requirements in 2015. As identified in The Coca-Cola Company Water Footprint Sustainability Assessment (WFSA), potential impacts are that nitrate and ammonia from fertilizer entering groundwater as a consequence of nitrate leaching from fields into the groundwater where crops are grown. Fertilizer could also pollute via stormwater, or due to improper treatment of wastewater, impacting nearby water bodies and watersheds (e.g. through eutrophication), affecting entire local ecosystems and all water users. Ammonia discharges from sugar plants may also impact surface and ground water quality.

Value chain stage
- Supply chain

Actions and procedures to minimize adverse impacts

- Requirement for suppliers to comply with regulatory requirements

Please explain

Our Supplier Guiding Principles (SGPs) and Principles for Sustainable Agriculture (PSAs) set out the requirements The Coca-Cola Company expects all suppliers to comply with, including requirements on water management (including pollutants), and minimizing water quality impacts from wastewater discharges and erosion, and nutrient/agrochemical runoff. We work together with and approve certification schemes such as Bonsucro, SAI and others for sustainable ingredient sourcing, all of which include extensive water management requirements, including water pollutant management, from measuring abstractions, implementing water efficient irrigation technologies and managing run-off. The Farm Sustainability Assessment of the Sustainable Agriculture Initiative Platform, the Bonsucro sustainable sugarcane standard and Rainforest Alliance certifications are some of the leading standards we support. We measure success through the % of PSA compliance. In 2022, we increased our sustainable sourcing of our 12 global priority agricultural ingredients to 64%, compared to 58% in 2021. We are also working with our suppliers to help promote the long-term sustainability of water resources through the implementation of advanced water management practices at the farm level.

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.
Value chain stage
Direct operations

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
Annually

How far into the future are risks considered?
1 to 3 years

Type of tools and methods used
Tools on the market
Enterprise risk management
Databases
Other

Tools and methods used
WRI Aqueduct
Enterprise Risk Management
Internal company methods
Source Water Vulnerability Assessment

Contextual issues considered
Water availability at a basin/catchment level
Water quality at a basin/catchment level
Stakeholder conflicts concerning water resources at a basin/catchment level
Impact on human health
Implications of water on your key commodities/raw materials
Water regulatory frameworks
Status of ecosystems and habitats
Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered
Customers
Employees
Investors
Local communities
Regulators
Suppliers

Comment
None

Value chain stage
Supply chain

Coverage
Partial

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
Every three years or more

How far into the future are risks considered?
1 to 3 years

Type of tools and methods used
Tools on the market
Databases
Other

Tools and methods used
WRI Aqueduct
FAO/AQUASTAT
External consultants

Contextual issues considered
Water availability at a basin/catchment level
Water quality at a basin/catchment level
Stakeholder conflicts concerning water resources at a basin/catchment level
Impact on human health
Implications of water on your key commodities/raw materials
Water regulatory frameworks
Status of ecosystems and habitats
Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered
Customers
Employees
Investors
W3.3b

(W3.3b) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

<table>
<thead>
<tr>
<th>Rationale for approach to risk assessment</th>
<th>Explanation of contextual issues considered</th>
<th>Explanation of stakeholders considered</th>
<th>Decision-making process for risk response</th>
</tr>
</thead>
</table>

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain.

<table>
<thead>
<tr>
<th>Row</th>
<th>Explanation of contextual issues considered</th>
<th>Explanation of stakeholders considered</th>
<th>Decision-making process for risk response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>We consider water availability and water quality at basin level, and implications of water on key commodities because our products contain water as a main ingredient or contain agricultural ingredients for which water is essential. The quality and availability of water at a basin level for key commodities if impacted, will have a detrimental impact on our ability to produce goods or could adversely impact production costs. Stakeholder conflicts concerning water resources can pose risks to our license to operate in a market. Addressing potential stakeholder conflicts constructively also offers opportunities to make a positive impact on lives and livelihoods of the communities in which we operate. Water regulatory frameworks: Without effective governance and regulations, sustainable water use in some cases could be threatened. Additionally, effective regulation could unlock many opportunities and benefits for both the local communities and business. The status of ecosystems and habitats in our areas of operation or in our supply-chain are essential in ensuring the long-term sustainability and availability of water. If these are impacted or degraded, this could lead to the degradation of quality water availability, potentially impacting community well-being, business productivity and levels of cost and ability to produce. Ensuring all facilities provide fully-functioning WASH services for all employees is fundamental to the health, safety and well-being of our employees.</td>
<td>Customers: Our finished products are sold to customers, which can be very large to very small retailers (grocery stores), restaurants, hotels, catering companies, leisure and entertainment parks etc. that can be large water users. As a result, customers’ voices and requirements are vital in considering our water-related policies, risks and strategies. Employee engagement is critical for the success of our business and the achievement of water goals. We engage our employees across the system to embed our business objectives in the day-to-day way of doing business, especially as we have such a vast operational footprint. Our local communities play a critical role in our social license to operate, as their voice directly affects our reputation as a business and relationships with local governments and other partners. Suppliers are essential in enabling our business to produce to demand, as well as to understand the impact that our business has through the value chain. Our ingredient supply chain is highly dependent on water so it is essential to engage suppliers.</td>
<td>As a result of the risk assessment in our direct operations, each facility has been placed within one of three categories: • LEADERSHIP LOCATIONS: Approximately 25% of our facilities face the highest level of water-related risks and are on a path to 100% regenerative water use by 2030. • ADVANCED EFFICIENCY LOCATIONS: System facility locations in a water-stressed context that will drive advanced water efficiency improvements in operations. • CONTRIBUTING LOCATIONS: System facility locations in areas with low water-related risks. Those will contribute to water security overall by implementing the Coca-Cola system's Water Resource Sustainability Standard, achieving industry benchmark water efficiency and 100% compliance with wastewater discharge standards. By mapping and overlaying our priority facilities, watersheds and communities, we have developed a framework of prioritization and a deeper understanding of risks, which will help us develop holistic, integrated and context-based approaches to help increase water security where it matters the most in our business, operations and supply chains. This informs decision-making by defining the priority operating watersheds, helping prioritize our investments and contextualizing our targets to address local water-related risks.</td>
</tr>
</tbody>
</table>
(W4.1a) How does your organization define substantive financial or strategic impact on your business?

We define ‘substantive impact’ as an event that has the potential to result in a significant adverse effect on our operations and/or result in significant loss to the environment or community services or well-being of the communities we serve, which includes potential impacts from water-related risks, such as water availability and quality that could impact our ability to produce goods or could adversely impact production costs.

The Company has internal processes and an effective internal control environment that facilitate the identification and management of risks. At a central level, this is led primarily through a robust Enterprise Risk Management program (comprised of Operating Units, Functions, manufacturing/distribution, and bottling partners) with internal oversight from the Risk Steering Committee. The program includes regular risk assessments, including a semi-annual update of key enterprise risks. Potential risks factors are gathered from functions and organizations across the global system (group of organizations including our bottling partners), and classified within a risk taxonomy composed of 24 risk categories across 5 thematic areas: Strategic and Reputational, People, Operational, Political and Regulatory, and Macro / Economic. Within these thematic areas and risk categories, the impact of climate change and sustainability issues are embedded as either risk categories on their own, as key factors acting as multipliers or accelerators of existing business risk categories.

Each risk item is given a likelihood score and a consequence score, on a 5-point scale, 1 being the lowest, and 5 being the highest. Based on the combination of likelihood score and consequence score, each potential risk event is ranked and management actions are considered. In addition, the health of approach (strategy and speed) are rated to determine the response ranking. Response ranking scales include Developing, Good, and Mature.

On the likelihood scale, two factors are considered when determining the score: the estimated time horizon and the probability of the risk event. The risk event is then given a score of 1 to 5: (1 - Rare, 2 - Unlikely, 3 - Possible, 4 - Likely, 5 - Almost Certain).

On the consequence scale, risk events are evaluated based on the potential financial loss, operating results, and how much the event would divert management’s attention. The risk event is then given a score of 1 to 5: (1 - Insignificant, 2 - Minor, 3 - Moderate, 4 - Major, 5 - Critical).

In the likelihood score, the thresholds for time horizon are: 1 (Rare) - greater than 10 years, 2 (Unlikely) - 6 - 10 years, 3 (Possible) - 3 - 6 years, 4 (Likely) - 1 - 3 years, 5 (Almost Certain) - 0 - 12 months. The thresholds for probability are: 1 (Rare) - <10%, 2 (Unlikely) - 10 - 40%, 3 (Possible) - 41 - 70%, 4 (Likely) - 71 - 90%, 5 (Almost Certain) - >90%.

Numerical scores are assigned to likelihood and consequence, with consequence being weighted more heavily. Severity ranking is determined by multiplying likelihood and consequence, and risks with a Critical risk rating and/or a Developing risk response are reviewed in more detail by the ERM team. Relevant risks that could materially affect our business and financial results are disclosed in the Annual Report on Form 10-K. This includes risks and uncertainties relating to global climate change and potential impacts to our business, such as those related to energy consumption, water consumption, process emissions and wastes, fleet operations, packaging waste, natural hazards, among others.

Risk events that score 3 or above on both likelihood and consequence or receive a score resulting in a Major or Critical risk rating based on case-specific considerations, are considered potentially substantive and reviewed in more detail by the ERM team. Top risks are shared with the Risk Steering Committee for discussion and action.

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>22</td>
<td>1-25</td>
</tr>
</tbody>
</table>

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
</tr>
<tr>
<td>Ganges - Brahmaputra</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

Less than 1%
Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company's manufacturing operations. The company conducts an annual global water risk assessment using WRI's Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of freshwater to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Other, please specify (Sabarmati)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
2

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company's manufacturing operations. The company conducts an annual global water risk assessment using WRI's Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of freshwater to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Krishna</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
4

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company's manufacturing operations. The company conducts an annual global water risk assessment using WRI's Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of freshwater to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Other, please specify (India East Coast)</th>
</tr>
</thead>
</table>
Number of facilities exposed to water risk
2

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company’s annual electricity generation that could be affected by these facilities</th>
<th>% company’s global oil & gas production volume that could be affected by these facilities</th>
<th>% company’s total global revenue that could be affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal</td>
<td>2</td>
<td>1-25</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Less than 1%</td>
</tr>
<tr>
<td>United States of America</td>
<td>2</td>
<td>1-25</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>1-10</td>
</tr>
</tbody>
</table>

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.
United States of America

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Comment

For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

South Africa

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company-wide facilities this represents</td>
<td>1-25</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Comment

For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

South Africa

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Comment

For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company's manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Botswana</th>
<th>Limpopo</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company's manufacturing operations. The company conducts an annual global water risk assessment using WRI's Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

Country/Area & River basin

<table>
<thead>
<tr>
<th>United Republic of Tanzania</th>
<th>Other, please specify (Africa, East Central Coast)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Namibia</th>
<th>Other, please specify (Namibia, Coast)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
</tr>
<tr>
<td>Other, please specify (Black Sea, South Coast)</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
For this question, we are only including facilities owned and operated by The Coca-Cola Company, we do not include facilities owned by independent or franchise bottling partners, or other entities that are not part of The Coca-Cola Company’s manufacturing operations. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. For this question we provide the number of facilities in this country and river basin located in areas of high or extremely high water stress. If there was a lack of supply of fresh water to these facilities it could disrupt the production or production capacity of these facilities which could in turn lead to a substantive impact on the company.

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin
India
Other, please specify (Ganges-Brahmaputra, India East Coast, Krishna, Sabarmati)

Type of risk & Primary risk driver
Chronic physical
Water stress

Primary potential impact
Increased operating costs

Company-specific description
Water is a main ingredient in substantially all of our products and is needed in our manufacturing process, for example in rinsing and cleaning packaging. While historically we have not experienced significant water supply difficulties, water is a limited natural resource in many parts of the world, and our company recognizes water availability, quality and sustainability, for both our operations and also the communities where we operate, as one of the key challenges facing our business. The company conducts an annual global water risk assessment using WRI’s Aqueduct 3.0 tool. This assessment provides a holistic, global view of our exposure to systemic water-related hazards, including baseline water stress, projected water stress to 2030, water quality challenges and access to water and sanitation challenges, for direct operations and key agricultural commodities. One of the primary risk drivers was identified to be water scarcity/water stress. We identified a total of 22 company-owned facilities globally located in areas of high or extremely high-water stress. These facilities are located in the US, Africa, Eurasia, India and Nepal. Due to the relatively high number of our Bottling Investments Group (BIG) facilities in India in areas of water stress, combined with potentially worsening drought conditions for some facilities due to climate change, there is a risk that water scarcity in this country could have a potential substantive impact on the business in the form of increased operating costs. These increased costs may include drilling of bore holes, contracting for third-party water access, administration, water treatment, transportation of water in tankers and transportation of finished beverages. These facilities in India in areas of water stress are located in the states of Andhra Pradesh, Gujarat, Odisha, Madhya Pradesh, Maharashtra, Telangana and Tamil Nadu and are situated in the four major watersheds of Sabarmati, Krishna, Ganges-Brahmaputra and India East Coast.

Timeframe
1-3 years

Magnitude of potential impact
Low
Likelihood
More likely than not

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
180000

Potential financial impact figure - maximum (currency)
270000

Explanation of financial impact
We estimate the potential financial impact of increased operating costs as a result of water scarcity to be between USD $180,000 to USD $2,700,000 per year for the nine company-owned facilities in India located in areas of high or extremely high-water stress. The increased indirect costs include drilling of bore holes, contracting for third-party water access, administration, water treatment, transportation of water in tankers and transportation of finished products.

The calculation is as follows for the minimum potential financial impact figure: A X B

(A) Minimum estimated increased operating cost for one facility in India to respond to water supply shortages for one year - $20,000
(B) Number of company-owned facilities in India in areas of high or extremely high-water stress – 9 facilities

The calculation is as follows for the maximum potential financial impact figure: C X D

(C) Maximum estimated increased operating cost for one facility in India to respond to water supply shortages for one year - $300,000
(D) Number of company-owned facilities in India in areas of high or extremely high-water stress – 9 facilities

Assumptions below:
- Potential increased operating costs are based on historic water restriction events in India
- Plant capacity and estimated water consumption are similar across the nine facilities in India
- Both minimum and maximum potential financial impact figures assume an increase in operating costs at all nine facilities in a year.

Primary response to risk
Adopt water efficiency, water reuse, recycling and conservanation practices

Description of response
All our production operations continue to implement the Coca-Cola system’s Water Resource Sustainability Standard. The purpose of this standard is to identify and reduce water quality- and quantity-related challenges for our operations. To decrease water use in our operations, we use internal tools, such as the Water Efficiency Catalogue, which assesses technical standards (e.g., on-line flow monitoring) and team culture (e.g., training on the importance of water efficiency) regarding water efficiency in our production facilities and provides innovative best practices (e.g., water reuse for package rinsing). In addition, in 2022, of the company’s facilities in India located in areas of high or extremely high water stress, several invested in initiatives to improve water efficiency. These include replacements of water pumps, optimizing clean-in-place processes and recycling of water rejected from reverse osmosis. These initiatives resulted in water efficiency improvements at each of the facilities. Additionally, two facilities in India are located in the Sabarmati watershed and 4 water replenishment projects were implemented in this watershed from 2016 to 2020. The projects, which include the recharging of local aquifers replenish water into the watershed for beneficial social, economic and/or environmental uses by other stakeholders and nature and help to improve water security in the basin. Replenishment benefits for these projects are anticipated to extend through to at least 2025.

As a case study, our facility in the city of Tirupathi, India currently faces extremely high levels of water stress. In 2022 this facility installed a high rate solid contact clarifier and a system to recover water rejected from reverse osmosis. These initiatives resulted in an improvement in water use ralio from 1.86 liters of water used per liter of beverage in 2021 to 1.78 in 2022.

Cost of response
704095

Explanation of cost of response
The total investment into the facilities located in high or extremely high baseline water stress in 2022 and water replenishment projects in the Sabarmati watershed that continue to have replenishment benefits through to at least 2025 is $704,095, which is calculated as follows: A + B.

(A) CAPEX for water-related projects in the nine facilities in India in 2022, located in areas of high or extremely high baseline water stress - $526,920
(B) Total cost for four water replenishment costs implemented in the Sabarmati watershed between 2016 and 2020 with replenishment benefits through to at least 2025- $177,175

W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>Mississippi River</td>
</tr>
</tbody>
</table>

Stage of value chain
Supply chain

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Type of risk</th>
<th>Primary risk driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute physical</td>
<td>Drought</td>
</tr>
</tbody>
</table>

CDP
Primary potential impact
Increased production costs due to changing input prices from supplier

Company-specific description
In 2022 we began an assessment of our priority ingredients at risk from water stress. The approach taken was firstly to identify a subset of our global priority ingredients for which water is most relevant. Priority ingredients were identified that are either responsible for over 1% of the Coca-Cola system’s total blue water footprint or have a blue water intensity greater than 100 m3/ton. Secondly the top sourcing countries were identified for each of the 10 global water priority ingredients. These are countries of strategic importance for procurement due to ongoing supplier engagements and/or business priorities, and/or countries contributing the highest volumes towards 80% of the total volume of a global water priority ingredient.

Through this approach we identified that the ingredient with the single biggest potential financial impact on the business was corn due to the size of the volume we source in the form of High Fructose Corn Syrup (HFCS) which is the principle nutritive sweetener we use in the United States. The largest volume of corn that we source from any single country, comes from the United States, the vast majority of which is grown in the upper Mississippi River basin (e.g. Nebraska, Iowa, Illinois, and Minnesota). Adverse weather conditions, including drought in certain parts of the United States may negatively affect the supply of corn, which in turn may result in higher prices to the company and our bottling partners for the procurement of HFCS.

Timeframe
1-3 years

Magnitude of potential impact
Low

Likelihood
About as likely as not

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
118000000

Potential financial impact figure - maximum (currency)
210000000

Explanation of financial impact
We estimate the potential financial impact of increased production costs for the procurement of High Fructose Corn Syrup (HFCS) in the US as a result of drought to be between $118 million to $210 million per year.

The calculation is as follows for the minimum potential financial impact: A x B x C

(A) Estimated purchase volume of HFCS in the US in a given year
(B) Current price of HFCS
(C) Minimum estimated potential price increase of HFCS due to drought and other adverse weather conditions

The calculation is as follows for the maximum potential financial impact: D x E x F

(D) Estimated purchase volume of HFCS in the US in a given year
(E) Current price of HFCS
(F) Maximum estimated potential price increase of HFCS due to drought and other adverse weather conditions

Assumptions below:
- Price increases due to drought and other adverse weather conditions would not exceed the previous 20 year high.

Primary response to risk
Supplier engagement | Other, please specify (Drive the adoption of sustainable sourcing certification by suppliers as a way of improving the resilience of our agricultural supply chains.)

Description of response
Corn is one of The Coca-Cola Company’s priority ingredients, in the form of High Fructose Corn Syrup.

We advance our sustainable sourcing of corn partly through our membership to Field to Market: The Alliance for Sustainable Agriculture, which focuses on row crop production in the United States, which aligns with our Principles for Sustainable Agriculture (PSA). With our four biggest corn suppliers, we have a 2014 commitment to expand the application of Field to Market’s Fieldprint® Platform, a data-driven tool that helps growers understand their field level performance on a range of sustainability indicators including irrigated water use and water quality, and identify areas for improvements in performance. The Platform also provides growers and the company access to benchmarks of environmental impacts in order to compare levels of performance. We are also partnering with ADM, one of our key corn suppliers, to support corn farmers to adopt sustainable and regenerative agriculture practices on 25,000 acres and enroll farmers in Field to Market’s Fieldprint® Platform covering 298,050 acres. The program’s aim is to reduce water risks in our corn supply chain, whilst also supporting farmers to increase yields, improve soil conservation and biodiversity and reduce emissions associated primarily with fertilizer application.

As a case study, through an innovative collaboration with Tate & Lyle, and Truterra, a conservation solutions provider, we supported U.S. Midwestern corn growers to implement sustainable agriculture practices on land equivalent to acres used to grow the corn used in our products. Participating farmers use cutting-edge technology and a network of agronomy advisors to embed up to 26 conservation practices, including ones that improve soil health, protect biodiversity, and potentially sequester carbon. The Coca-Cola Company was Tate & Lyle’s first customer to pilot the program under the Field to Market initiative for sustainably growing corn.

As a result of such work, 70% of our corn volumes were sustainably sourced to our Leader standard, in line with our PSA in 2022.

Cost of response
675000

Explanation of cost of response
The cost of response is the company’s committed contributions to ADM to execute the Regenerative Agriculture program between 2022 and 2024, plus our annual contribution to the Field to Market platform- a total of USD $675,000. The company’s membership in the Field to Market platform is one of the primary ways in which we
advance our sustainable sourcing of corn in the US, which is where we source the largest volume of corn of any single country. Membership provides us with the ability to offer growers in our corn supply chain with access to Field to Market’s Fieldprint Calculator, which can help them to understand their field level performance on a range of sustainability indicators including irrigated water use and water quality, and identify areas for improvements in performance. The Platform also provides us with access to local, state and national benchmarks of environmental impacts in order to compare levels of performance.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

- **Type of opportunity**
 - Efficiency

- **Primary water-related opportunity**
 - Improved water efficiency in operations

 Company-specific description & strategy to realize opportunity

 Improving water efficiency in our production facilities is important in managing physical, regulatory and social and reputational risks. In addition, water efficiency presents an opportunity to reduce operating costs associated with its procurement and treatment processes (RO, carbon, polishing, UV etc.)

 To decrease water use in our operations, we use internal tools such as the Water Efficiency Catalogue, which assesses technical standards (e.g., on-line flow monitoring, water collection and reuse capabilities) and team culture (e.g., training and communication on the importance of water efficiency) regarding water efficiency in our production facilities and provides innovative best practices (e.g., water reuse for package rinsing and water-free lubrication of conveyor belts). In the development of new plants, we leverage our Sustainability by Design Tool to ensure that water-efficient processes are implemented and that we achieve best-in-class water efficiency. We have set an ambitious target to reduce our water use ratio by 20% by 2030 from a 2015 baseline for all operations across the system. In 2022 we achieved a 10% improvement in water efficiency across all system operations compared to 2015.

 An example of an action taken to realize this opportunity in 2022, is from one of our concentrate plants in Ireland which implemented circular washing in its clean-in-place process and a monitor-to-improve mindset in the local team. The outcome was that the facility reduced its water consumption by more than 13,000 cubic meters compared to the previous year.

 Estimated timeframe for realization
 - Current - up to 1 year

 Magnitude of potential financial impact
 - Low

 Are you able to provide a potential financial impact figure?
 - Yes, a single figure estimate

 Potential financial impact figure (currency)
 - $108,519

 Potential financial impact figure – minimum (currency)
 - <Not Applicable>

 Potential financial impact figure – maximum (currency)
 - <Not Applicable>

 Explanation of financial impact

 We estimate USD $108,519 as the potential financial impact in 2022 as a result of savings due to improvements in water efficiency in that year, which is calculated as follows: (A – B) x C

 (A) Potential water use in 2022 in company-owned facilities using our water use ratio from 2021 – 33,665,647 (kL)
 (B) Actual water use in 2022 in company-owned facilities- 33,557,128 (kL)
 (C) Assumed average cost of water (USD/kL)- $1

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

- **Facility reference number**
 - Facility 1

- **Facility name (optional)**

- **Country/Area & River basin**
 - South Africa
 - Other, please specify (Groot Berg)
Latitude
-34.18539
Longitude
19.006452

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
Not Applicable

Oil & gas sector business division
Not Applicable

Total water withdrawals at this facility (megaliters/year)
155

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
155

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
67

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
67

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
89

Comparison of total consumption with previous reporting year
About the same

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 2

Facility name (optional)

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Limpopo</th>
</tr>
</thead>
</table>

Latitude
-23.872904
Longitude
29.46688

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
Not Applicable
Oil & gas sector business division

Total water withdrawals at this facility (megaliters/year)
621

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
107

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
514

Total water discharges at this facility (megaliters/year)
269

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
269

Total water consumption at this facility (megaliters/year)
352

Comparison of total consumption with previous reporting year
Lower

Please explain
Identified as being in an area of high baseline water stress, according to WRI’s Aqueduct tool.

Facility reference number
Facility 3

Facility name (optional)

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>Other, please specify (Krokodil)</td>
</tr>
</tbody>
</table>

Latitude
-25.714016

Longitude
28.121141

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1007

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
109
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
898
Total water discharges at this facility (megaliters/year)
48
Comparison of total discharges with previous reporting year
Much lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
48
Total water consumption at this facility (megaliters/year)
959
Comparison of total consumption with previous reporting year
Much higher
Please explain
Identified as being in an area of high baseline water stress, according to WRI’s Aqueduct tool.

Facility reference number
Facility 4
Facility name (optional)
Country/Area & River basin
South Africa Other, please specify (Swakop)

Latitude
-22.504886
Longitude
17.069025
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
307
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
307
Total water discharges at this facility (megaliters/year)
174
Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water	0
Discharges to brackish surface water/seawater	0
Discharges to groundwater	0
Discharges to third party destinations	174

Total water consumption at this facility (megaliters/year)
133

Comparison of total consumption with previous reporting year
Higher
Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 5

Facility name (optional)

Country/Area & River basin
<table>
<thead>
<tr>
<th>South Africa</th>
<th>Other, please specify (Kriskodil)</th>
</tr>
</thead>
</table>

Latitude
-25.96326

Longitude
28.224821

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
474

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
474

Total water discharges at this facility (megaliters/year)
3

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
3
Total water consumption at this facility (megaliters/year)
471

Comparison of total consumption with previous reporting year
Much higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 6

Facility name (optional)
CDP

Country/Area & River basin
Botswana Other, please specify (Marico)

Latitude
-24.63115

Longitude
25.91934

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
165

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
165

Total water discharges at this facility (megaliters/year)
9

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
9

Total water consumption at this facility (megaliters/year)
156

Comparison of total consumption with previous reporting year
Higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 7

Facility name (optional)
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United Republic of Tanzania</th>
<th>Other, please specify (Great Ruaha 2)</th>
</tr>
</thead>
</table>

Latitude
-8.935178

Longitude
33.414812

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
142

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
142

Total water discharges at this facility (megaliters/year)
43

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
43

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
99

Comparison of total consumption with previous reporting year
About the same

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>India</th>
<th>Krishna</th>
</tr>
</thead>
</table>

Latitude
16.6476

Longitude
74.817798

Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
452

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
452

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
157

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
157

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
295

Comparison of total consumption with previous reporting year
Higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 9

Facility name (optional)

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Other, please specify (Jamni)</td>
</tr>
</tbody>
</table>

Latitude
23.259

Longitude
77.412

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
41

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
41
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
10
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
10
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
31
Comparison of total consumption with previous reporting year
About the same
Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 10
Facility name (optional)

Country/Area & River basin

| India | Other, please specify (Ghod / Nira / Bhima / Man) |

Latitude
18.643958
Longitude
73.932568
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
301
Comparison of total withdrawals with previous reporting year
Much higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
301
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
51
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
51
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
250
Comparison of total consumption with previous reporting year
Much higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI’s Aqueduct tool.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td>India Other; please specify (Sabarmati)</td>
</tr>
</tbody>
</table>

Latitude
23.0524
Longitude
72.5337
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
857
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
855
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
2
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
186
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
186
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
671

Comparison of total consumption with previous reporting year
Much higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 12

Facility name (optional)

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Other, please specify (India East Coast)</th>
</tr>
</thead>
</table>

Latitude
13.068

Longitude
80.018

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
264

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
264

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
9

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
9

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
255

Comparison of total consumption with previous reporting year
Much higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 13
<table>
<thead>
<tr>
<th>Facility name (optional)</th>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Other, please specify (Musi / Aler)</td>
</tr>
</tbody>
</table>

Latitude
17.361622

Longitude
78.47473

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
470

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
470

Total water discharges at this facility (megaliters/year)
40

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
29

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
11

Total water consumption at this facility (megaliters/year)
430

Comparison of total consumption with previous reporting year
Higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 14

Facility name (optional)

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Other, please specify (Delta)</th>
</tr>
</thead>
</table>

Latitude
16.314

Longitude
80.435

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
425

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
425

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
50

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
50

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
375

Comparison of total consumption with previous reporting year
Higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 15

Facility name (optional)

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Other, please specify (India East Coast)</th>
</tr>
</thead>
</table>

Latitude
13.76

Longitude
79.7

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
238

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
238
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
84
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
84
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
153
Comparison of total consumption with previous reporting year
Much higher
Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 16
Facility name (optional)
Country/Area & River basin

<table>
<thead>
<tr>
<th>Turkey</th>
<th>Sakarya</th>
</tr>
</thead>
</table>

Latitude
40.08249
Longitude
33.03353
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
7
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
7
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year) 3

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water 0
Discharges to brackish surface water/seawater 0
Discharges to groundwater 0
Discharges to third party destinations 3

Total water consumption at this facility (megaliters/year) 4

Comparison of total consumption with previous reporting year
About the same

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 17
Facility name (optional)
Country/Area & River basin
Nepal Other, please specify (Lakanadi / Ghauri)

Latitude
27.727031
Longitude
85.304737

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year) 119

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0
Withdrawals from brackish surface water/seawater 0
Withdrawals from groundwater - renewable 119
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 0

Total water discharges at this facility (megaliters/year) 30

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water 30
Discharges to brackish surface water/seawater 0
Discharges to groundwater
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
89

Comparison of total consumption with previous reporting year
Much higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 18

Facility name (optional)

Country/Area & River basin
Nepal

Other, please specify (Kali Gandaki / Seti / Marsyangdi)

Latitude
27.680671

Longitude
84.430817

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
352

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
352

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
162

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
162

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
190

Comparison of total consumption with previous reporting year
Higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.
Facility 19

Facility Reference Number
Facility 19

Country/Area & River basin
United States of America

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.65737</td>
<td>-84.39329</td>
</tr>
</tbody>
</table>

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
Not Applicable

Oil & gas sector business division
Not Applicable

Total water withdrawals at this facility (megaliters/year)
467

- **Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes**
 0
- **Withdrawals from brackish surface water/seawater**
 0
- **Withdrawals from groundwater - renewable**
 0
- **Withdrawals from groundwater - non-renewable**
 0
- **Withdrawals from produced/entrained water**
 0
- **Withdrawals from third party sources**
 467

Total water discharges at this facility (megaliters/year)
280

- **Discharges to fresh surface water**
 0
- **Discharges to brackish surface water/seawater**
 0
- **Discharges to groundwater**
 0
- **Discharges to third party destinations**
 280

Total water consumption at this facility (megaliters/year)
187

- **Comparison of total consumption with previous reporting year**
 Lower

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility 20

Facility Reference Number
Facility 20

Country/Area & River basin
India

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.99298</td>
<td></td>
</tr>
</tbody>
</table>

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.
Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
206

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
206
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
34

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
34
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
172

Comparison of total consumption with previous reporting year
Much higher

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name (optional)</th>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 21</td>
<td></td>
<td>United States of America</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.04377</td>
<td>-117.53474</td>
</tr>
</tbody>
</table>

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
290

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
290

Total water discharges at this facility (megaliters/year)
158

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
35

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
123

Total water consumption at this facility (megaliters/year)
132

Comparison of total consumption with previous reporting year
Lower

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

Facility reference number
Facility 22

Facility name (optional)

Country/Area & River basin

| United States of America | Saint John River |

Latitude
28.741414

Longitude
-81.534429

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
39

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
23

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
Withdrawals from third party sources
16

Total water discharges at this facility (megaliters/year)
28

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
28

Total water consumption at this facility (megaliters/year)
11

Comparison of total consumption with previous reporting year
Lower

Please explain
Identified as being in an area of high baseline water stress, according to WRI's Aqueduct tool.

W5.1a

(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been third party verified?

Water withdrawals – total volumes

% verified
76-100

Verification standard used
EY assures The Coca-Cola system's water use ratio, of which water withdrawal is a component, to the attestation standards established by the American Institute of Certified Public Accountants (AICPA) AT-C section 105, Concepts Common to All Attestation Engagements, and AT-C section 210, Review Engagements. Water use ratio (efficiency) is defined as liters of water used per liter of product produced. Total water used is the total of all water used by TCCS in all global production facilities and co-located distribution centers, from all sources, including municipal, well and spring, surface, sea, and collected rain. This includes water used for: production; water treatment; boiler makeup; cooling (contact and non-contact); cleaning and sanitation; backwashing filters; irrigation; washing trucks and other vehicles; kitchen or canteen; toilets and sinks; and fire control. This does not include return water or non-branded bulk water donated to the community. Liters of product produced include all production, not just saleable products.

Please explain
<Not Applicable>

Water withdrawals – volume by source

% verified
Not verified

Verification standard used
<Not Applicable>

Please explain
Not currently assured.

Water withdrawals – quality by standard water quality parameters

% verified
Not verified

Verification standard used
<Not Applicable>

Please explain
Not currently assured.

Water discharges – total volumes

% verified
Not verified

Verification standard used
<Not Applicable>

Please explain
Not currently assured.
W6. Governance

W6.1

(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope</td>
<td>Content</td>
<td>Please explain</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Description of business impact on water</td>
<td>Our 2030 Water Security Strategy is focused on accelerating the actions needed to increase water security where we operate, source ingredients and touch people's lives. Our 2030 strategy is grounded in the fact that water is a shared resource. As such, our work is organized to address water security in: Our operations; Our Watersheds, and: Our Communities. We have set key goals designed to achieve our vision including to achieve 100% regenerative water use across 175 of our facilities identified as facing high levels of water stress by 2030 - which means facilities must reduce, reuse, recycle and replenish the water used in operations in the local correlated watersheds for beneficial social, economic and/or environmental uses by other stakeholders and nature. We have also set goals to improve the health of 60 watersheds identified as most critical for our operations and agricultural supply chain by 2030, to return a total of 2 trillion liters of water to nature and communities globally between 2021 and 2030, and to achieve a 20% water efficiency improvement by 2030 across all system operations compared to 2015. Furthermore, we plan to certify all our 18 concentrate production sites against the latest Alliance for Water Stewardship (AWS) Standard by 2025. We work collaboratively with partners across sectors to implement actions in our operations, watersheds (including agricultural ingredient sourcing regions) and communities.</td>
</tr>
<tr>
<td></td>
<td>Commitment to align with international frameworks, standards, and widely-recognized water initiatives</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitment to prevent, minimize, and control pollution</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitment to reduce or phase-out hazardous substances</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitment to reduce water withdrawal and/or consumption volumes in direct operations</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitment to safely managed Water, Sanitation and Hygiene (WASH) in local communities</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitment to water stewardship and/or collective action</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitment to the conservation of freshwater ecosystems</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Commitments beyond regulatory compliance</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Reference to company water-related targets</td>
<td>Please explain</td>
</tr>
<tr>
<td></td>
<td>Recognition of environmental linkages, for example, due to climate change</td>
<td>Please explain</td>
</tr>
</tbody>
</table>
| | W6.2 | *(W6.2) Is there board level oversight of water-related issues within your organization?*
Yes |
| | W6.2a |
Please explain |
(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position or individual or committee</th>
<th>Responsibilities for water-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board-level committee</td>
<td>The Board has delegated oversight of sustainability matters to its various committees in order to leverage each committee’s experience and subject-matter strengths in overseeing the varied and technical matters encompassed by sustainability. The Corporate Governance and Sustainability Committee has primary responsibility for overseeing the company’s sustainability strategies and initiatives—and related risks—that concern environmental, social, legislative, regulatory and public policy matters (including those related to water), including progress toward the company’s sustainability goals. The Committee reviews shareowner proposals on sustainability issues to be included in the company’s proxy statements and makes recommendations to the Board. In addition, the Committee receives updates on priority sustainability issues, including actions and progress toward goals. The Audit Committee oversees certain processes related to external sustainability disclosures and works jointly with the Corporate Governance and Sustainability Committee to oversee sustainability risks facing the company. Finally, the Talent and Compensation Committee oversees the company’s human capital management policies and strategies. An example of a water-related decision made by the Board: Effective February 2022, the Talent and Compensation Committee approved plans to link sustainability performance to our annual and long-term incentive programs for executives in 2022. In the long-term incentive program, predefined performance measures related to our World Without Waste packaging strategy and our 2030 Water Security Strategy were incorporated into the 2022–2024 incentive awards (watershed leadership locations replenishment rate).</td>
</tr>
</tbody>
</table>

W6.2b

(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - all meetings</td>
<td>Monitoring implementation and performance</td>
<td>The Board has delegated oversight of sustainability matters to its various committees in order to leverage each committee’s experience and subject-matter strengths in overseeing the varied and technical matters encompassed by sustainability. The Corporate Governance and Sustainability Committee has primary responsibility for overseeing the company’s sustainability strategies and initiatives—and related risks—that concern environmental, social, legislative, regulatory and public policy matters (including those related to water), including progress toward the company’s sustainability goals. The Committee reviews shareowner proposals on sustainability issues to be included in the company’s proxy statements and makes recommendations to the Board. In addition, the Committee receives updates on priority sustainability issues, including actions and progress toward goals. The Audit Committee oversees certain processes related to external sustainability disclosures and works jointly with the Corporate Governance and Sustainability Committee to oversee sustainability risks facing the company. Finally, the Talent and Compensation Committee oversees the company’s human capital management policies and strategies. An example of a water-related decision made by the Board: Effective February 2022, the Talent and Compensation Committee approved plans to link sustainability performance to our annual and long-term incentive programs for executives in 2022. In the long-term incentive program, predefined performance measures related to our World Without Waste packaging strategy and our 2030 Water Security Strategy were incorporated into the 2022–2024 incentive awards (watershed leadership locations replenishment rate).</td>
</tr>
<tr>
<td>Monitoring progress towards corporate targets</td>
<td>Reviewing and guiding annual budgets</td>
<td>The Talent and Compensation Committee approved plans to link sustainability performance to our annual and long-term incentive programs for executives in 2022. In the long-term incentive program, predefined performance measures related to our World Without Waste packaging strategy and our 2030 Water Security Strategy were incorporated into the 2022–2024 incentive awards (watershed leadership locations replenishment rate).</td>
</tr>
<tr>
<td>Overseeing acquisitions, mergers, and divestitures</td>
<td>Reviewing and guiding business plans</td>
<td></td>
</tr>
<tr>
<td>Overseeing major capital expenditures</td>
<td>Reviewing and guiding corporate responsibility strategy</td>
<td></td>
</tr>
<tr>
<td>Overseeing the setting of corporate targets</td>
<td>Reviewing and guiding major plans of action</td>
<td></td>
</tr>
<tr>
<td>Providing employee incentives</td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td>Reviewing innovation/R&D priorities</td>
<td>Reviewing and guiding strategy</td>
<td></td>
</tr>
<tr>
<td>Setting performance objectives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W6.2d
(W6.2d) Does your organization have at least one board member with competence on water-related issues?

<table>
<thead>
<tr>
<th>Board member(s) have competence on water-related issues</th>
<th>Criteria used to assess competence of board member(s) on water-related issues</th>
<th>Primary reason for no board-level competence on water-related issues</th>
<th>Explain why your organization does not have at least one board member with competence on water-related issues and any plans to address board-level competence in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>This is judged based on a board member's experience with climate and water-related issues.</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Other C-Suite Officer, please specify (Senior Vice President (SVP) and Chief Communications, Sustainability and Strategic Partnerships Officer)

Water-related responsibilities of this position
Assessing future trends in water demand
Assessing water-related risks and opportunities
Managing water-related risks and opportunities
Setting water-related corporate targets
Monitoring progress against water-related corporate targets

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
The Senior Vice President and Chief Communications, Sustainability and Strategic Partnerships Officer manages a diverse portfolio that includes leading progress against the company’s global sustainability goals. These goals include those in our 2030 Water Security Strategy. As part of the responsibility to lead progress against our water-related goals, the Chief Sustainability Officer works with a networked team to monitor progress against the goals, and identify, assess and manage related risks and opportunities. The Board and its committees also receive regular reports from the Chief Sustainability Officer, and others as required, related to progress toward achieving the company’s sustainability goals.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Our executives' annual compensation package includes performance measures tied to sustainability achievements, including those related to water. To reinforce the importance of meeting our sustainability goals, the Talent and Compensation Committee approved plans to link sustainability performance to our annual and long-term incentive programs for executives in 2022. In the long-term incentive program, predefined performance measures related to our World Without Waste packaging strategy and our 2030 Water Security Strategy (watershed leadership locations replenishment rate) were incorporated into the 2022–2024 incentive awards.</td>
</tr>
</tbody>
</table>

W6.4a

(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Contribution of incentives to the achievement of your organization’s water commitments</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Corporate executive team Other, please specify (Watershed leadership locations replenishment rate)</td>
<td>Watershed leadership locations replenishment rate is the ratio of replenish project volumetric benefits (located within “leadership locations” minor basins and/or their water supply watersheds) divided by the replenishment required in the “leadership locations” (its total water use less its beneficial wastewater discharge). “Leadership locations” is a company designation for locations of company manufacturing facilities that satisfy the criteria of a water risk assessment. The 2024 target is 70% replenishment aggregated globally across all leadership locations. The performance indicator is linked to progress on the company’s three key water goals. The first goal is to achieve 100% regenerative water use across 175 of our facilities identified as facing high levels of water stress by 2030, and the performance indicator is part of how “regenerative water use” is calculated, in addition to water reduction, reuse, and recycling. The second goal is to improve the health of 60 watersheds identified as most critical for our operations and agricultural supply chain by 2030, and the performance indicator includes improving the availability and quality of water in these priority watersheds. The third goal is to return a total of 2 trillion liters of water to nature and communities globally between 2021 and 2030 and the performance indicator includes replenish project volumetric benefits that will contribute to the total for this goal.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Non-monetary reward</td>
<td>No one is entitled to these incentives</td>
<td><Not Applicable></td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

W6.5
(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

Yes, direct engagement with policy makers
Yes, trade associations
Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

On a global level, we prioritize multi-stakeholder policy dialogue platforms like the 2030 Water Resources Group, the CEO Water Mandate, the Global Water Resilience Coalition and support industry-aligned standards such as the Alliance for Water Stewardship and WASH4WORK. Within this global context, our policy influencing activities on a local level are guided by our global water strategy, local Risk & Source Vulnerability assessments and Source Water Protection Plans, which emphasize stakeholder engagement and transparency. We ensure consistency in our actions in a number of ways:

- Organizational integration of water leadership and public policy into one function in the business
- A culture of sharing and alignment across the function and the system (i.e. between the company and bottlers) worldwide.
- Effective internal governance through a cross-functional team

If inconsistencies are discovered, the global lead for water will convene the appropriate representatives across functions (Public Policy, Sustainability, Legal, Technical, Franchise bottling partners etc.) and local operating units, and coordinate the appropriate actions, supported by senior leadership.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td>Our long-term business planning and objectives have always been informed by a robust water strategy framework and risk assessment. Our 2030 Water Security Strategy is focused on accelerating the actions needed to increase water security where we operate, source ingredients and touch people’s lives. We do that by contributing toward sustainable, clean water access that improves livelihoods and wellbeing while protecting against water-related disasters. Over the last couple of years, we followed a process to segment and prioritize our operating facilities, commercial regions, sourcing regions for global priority ingredients, watersheds, and communities based on those with the highest water-related risks (read more on the following page). As a result of this work, we have set three key long-term goals designed to achieve our vision: 1.) Achieve 100% regenerative water use across 175 of our facilities identified as facing high levels of water stress by 2030; 2.) Improve the health of 60 watersheds identified as most critical for our operations and agricultural supply chain by 2030; 3.) Return a total of 2 trillion liters of water to nature and communities globally between 2021 and 2030. All three goals contribute to our commitment to maintain at least 100% global replenishment of the water used in our finished beverages. In addition, we have set an ambitious target to reduce our water use ratio by 20% by 2030 from a 2015 baseline for all operations across the system.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td>Our strategy to achieve our long-term business objectives continues to focus on collective action with partners across sectors to implement actions in our operations, watersheds (including agricultural ingredient sourcing regions) and communities:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actions within our operations include use less water, reuse and treat wastewater.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actions in our watersheds and our communities include for e.g. support nature-based solutions, invest in landscape solutions (grey infrastructure), help improve watershed health, help farmers use less water and implement sustainable agriculture practices, help provide communities with access to safe water, sanitation and hygiene (WASH), and advocate for good water governance and smart policies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All actions are aligned with the achievement of our stated goals by the year 2030.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td>Our goal to achieve 100% regenerative water use for each of our Leadership Locations (c. 25% of facilities exposed to high levels of water stress) by 2030 will need additional investments in:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reducing total water withdrawal through improving efficiency of water use in operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increasing the amount of treated wastewater discharged that meets the standards required for beneficial use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replenishing the balance to nature and communities through a combination of projects that support local watersheds, facilitate community access to water sanitation and hygiene, and improve efficiency of water use in local agriculture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>We are integrating this conversation in both our annual and long-term financial and business planning, as well as working closely with our bottlers to secure their support and investments.</td>
</tr>
</tbody>
</table>

W7.2
What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Water-related CAPEX (+/- % change)</th>
<th>-39</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Water-related OPEX (+/- % change)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Anticipated forward trend for OPEX (+/- % change)</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain

We report water-related CAPEX and OPEX for the 22 company-owned facilities in areas of high or extremely high water stress as we prioritize our facilities facing the highest level of water-related risks. Although facilities continued to invest to reduce water related challenges in our operations, particularly in Africa and India, overall, our water-related capital expenditure in these facilities decreased between 2021 to 2022. This was mainly due to the fact that one of our facilities in South Africa implemented a relatively costly project to re-engineer and optimize their water treatment plant in 2021. Water-related OPEX increased slightly between 2021 and 2022, largely due to OPEX increases in some facilities in India and South Africa. These cost increases were due to water and wastewater tariff increases and growth in the volume of water used due to larger production volumes in 2022 compared to 2021. We anticipate similar expenditures in the next reporting year compared to 2022.

Does your organization use scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Provide details of the scenario analysis, what water-related outcomes were identified, and how they have influenced your organization’s business strategy.

<table>
<thead>
<tr>
<th>Type of scenario analysis used</th>
<th>Parameters, assumptions, analytical choices</th>
<th>Description of possible water-related outcomes</th>
<th>Influence on business strategy</th>
</tr>
</thead>
</table>
| Climate-related | Parameters: Physical indicators of change included heat wave probability, hot days change, drought index, tropical nights change, rainfall change, coastal flood risk, riverine flood risk
Assumptions:
- Environmental: Widespread crop failures, frequent and extensive periods of drought in some regions and flooding in others, clearly highlight a growing intensity and volatility of weather events worldwide. Other long-term impacts include extreme temperatures, measurable sea level rise, etc.
- Very High GHG emissions; consistent with no policy changes to reduce emissions (current policies or business as usual).
- Increase in number of hot days and droughts
- Increased mortality
Analytical Choices: Time horizons of 2020-2040, RCP 8.5 (IPCC) | In 2018-2019, as part of our climate-related risk assessment, we selected two key risks and conducted both a qualitative and quantitative scenario analysis. The following are the top priority risks identified:
- Changes to weather and precipitation patterns limiting the availability of ingredients and raw materials: In the United States, we use corn-derived sweeteners. Adverse weather conditions, including drought in certain parts of the United States may negatively affect the supply of corn, which in turn may result in shortages of and higher prices to the company and our bottling partners for High Fructose Corn Syrup (HFCS) resulting in potential increased costs of between $118 million and $210 million per year.
- Water scarcity disrupting sourcing and/or production: In India, we have 9 facilities that are located in areas considered to be either extremely high or high in water stress. Water scarcity may result in increased operating costs of between $180,000 to $2,700,000 per year for the nine company-owned facilities in India located in areas of high or extremely high-water stress. The increased operating costs include drilling of bore holes, contracting for third-party water access, administration, water treatment, transportation of water in tankers and transportation of finished products. | The anticipated timescale for our response is to the year 2030. Our response to the identified water-related outcome of changes to weather and precipitation patterns limiting the availability of ingredients and raw materials, was to work closely in 2022 with our suppliers to map our sourcing regions for our global priority ingredients. We are focusing on engagement with suppliers in these priority sourcing watersheds. In 2022 began to approach more than 45 suppliers that source ingredients from regions facing high or extremely high water stress, to gather data on their water management practices. In 2023, we plan to analyze this information to develop a baseline that will feed a supplier engagement strategy and collective action plan.
In response to the identified water-related outcome of water scarcity disrupting production we have set a goal to improve water efficiency across all system operations by 20% by 2030 compared to 2015. |
(W7.4) Does your company use an internal price on water?
Row 1

Does your company use an internal price on water?
No, but we are currently exploring water valuation practices

Please explain
We have partnered with denkstatt to develop a “Cost of Water” tool for our teams. This tool will help us get a better understanding of the cost of water by evaluating the costs associated with potential water risks in addition to the operational costs associated with water use. Better understanding of these costs will help strengthen decision making and the business case for investment in initiatives that respond to local challenges.

W7.5

(W7.5) Do you classify any of your current products and/or services as low water impact?

<table>
<thead>
<tr>
<th>Products and/or services classified as low water impact</th>
<th>Definition used to classify low water impact</th>
<th>Primary reason for not classifying any of your current products and/or services as low water impact</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, and we do not plan to address this within the next two years</td>
<td>Other, please specify (Need more guidance.)</td>
<td>We are focused on water efficiency improvements in Leadership Locations and Advanced Efficiency Locations that operate in water-stressed contexts, which has resulted in a water use ratio of 1.79 liters of water used per liter of beverage in 2022. This is our highest achievement in water efficiency to date and significantly better than the industry average for carbonated soft drinks of 1.91 l/l of beverages. We have achieved a 10% improvement in water efficiency across all system operations compared to 2015. However, we need more guidance and clear taxonomy to understand whether we can classify our products as low water impact.</td>
<td></td>
</tr>
</tbody>
</table>

W8. Targets

W8.1

(W8.1) Do you have any water-related targets?
Yes

W8.1a

(W8.1a) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

<table>
<thead>
<tr>
<th>Target set in this category</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water pollution Yes <Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Water withdrawals No, and we do not plan to within the next two years</td>
<td>While we do not have a specific water withdrawal target, we do have a water efficiency target.</td>
</tr>
<tr>
<td>Water, Sanitation, and Hygiene (WASH) services No, and we do not plan to within the next two years</td>
<td>In 2022, our operating units began the identification of priority communities based on communities’ access to WASH and/or their resilience to the impacts of climate change (e.g., floods and droughts). We aim to support our priority communities in addressing shared water challenges by identifying and implementing interventions focused on: 1. Improving access to safe drinking water, sanitation and hygiene. 2. Enabling adaptation to water-related climate change impacts. 3. Ensuring rapid recovery from crises. We’re also working with WASH4Work, an initiative hosted by the CEO Water Mandate, to develop a standardized methodology of accounting for the co-benefits of WASH projects (e.g., health, income, nutrition, safety and security, and education) and strengthen the business case for investments in WASH programs.</td>
</tr>
<tr>
<td>Other Yes <Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

W8.1b

(W8.1b) Provide details of your water-related targets and the progress made.

Target reference number
Target 1

Category of target
Product water intensity

Target coverage
Company-wide (direct operations only)

Quantitative metric
Reduction per unit of production

Year target was set
2021

Base year
2015

Base year figure
1.98

Target year
2030

Target year figure
1.58

Reporting year figure
1.79

% of target achieved relative to base year
47.5

Target status in reporting year
Revised

Please explain
We have set an ambitious target to reduce our water use ratio by 20% by 2030 from a 2015 baseline for all operations across the system. We are focused on water efficiency improvements in Leadership Locations and Advanced Efficiency Locations that operate in water-stressed contexts, which has resulted in a water use ratio of 1.79 liters of water used per liter of beverage in 2022. This is our highest achievement in water efficiency to date and significantly better than the industry average for carbonated soft drinks of 1.91 l/l of beverages. This is a system-wide target.

Target reference number
Target 2

Category of target
Watershed remediation and habitat restoration, ecosystem preservation

Target coverage
Company-wide (direct operations only)

Quantitative metric
Other, please specify (Liters of water returned to nature and communities globally)

Year target was set
2021

Base year
2021

Base year figure
2933000000

Target year
2030

Target year figure
2000000000000

Reporting year figure
5843000000

% of target achieved relative to base year
0.145713689125102

Target status in reporting year
Revised

Please explain
Globally in 2022, we replenished 159% of the volume of water we used in our beverages, equating to approximately 291 billion liters, through ecosystem restoration and watershed remediation projects. This is a system-wide target.

Our 2030 Water Security Strategy is focused on accelerating the actions needed to increase water security where we operate, source ingredients and touch people’s lives. We do that by contributing toward sustainable, clean water access that improves livelihoods and wellbeing while protecting against water-related disasters. We also work to preserve nature and biodiversity as well as to promote advanced water management practices.

Target reference number
Target 3

Category of target
Water pollution

Target coverage
Company-wide (direct operations only)

Quantitative metric
Increase in proportion of wastewater that is safely treated

Year target was set
1994
Base year
1994

Base year figure
95.1

Target year
2022

Target year figure
100

Reporting year figure
99

% of target achieved relative to base year
79.5918367346939

Target status in reporting year
Underway

Please explain
This target is important to The Coca-Cola Company because nearly all of our products use water as a main ingredient, and water is critical to the communities in which we operate. As such, the quality of water at a basin and catchment level, if impacted, will have a detrimental impact on our ability to produce goods, or could adversely impact production costs, as well as impact our stakeholders and the communities in which we operate.

Our system-wide target is to require 100% of our facilities, including all production facilities operated by franchise bottlers, to implement strict standards to treat and return the water we use in our manufacturing process back to nature at a level that supports aquatic life, covering 11 pollutants at a minimum, even when not required by local regulation.

To meet this target, we require strict waste water quality assessment and reporting and invest in water treatment plants to ensure discharges meet criteria where infrastructure is not available.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?
Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W8 Targets</td>
<td>6.1a - Ratio of liters of water use per liter of product produced</td>
<td>Other, please specify (AICPA)</td>
<td>Water use ratio (efficiency) is defined as liters of water used (withdrawn) per liter of product produced. Total water used is the total of all water used by the Coca-Cola system in all global production facilities and co-located distribution centers, from all sources, including municipal, well, surface water, and collected rain water. This includes water used for: production; water treatment; boiler makeup; cooling (contact and non-contact); cleaning and sanitation; backwashing filters; irrigation; washing trucks and other vehicles; kitchen or canteen; toilets and sinks; and fire control. This does not include return water or non-branded bulk water donated to the community. Liters of product produced include all production, not just saleable products. The intent of the replenish program is to contribute to water security for communities and nature through the implementation of a global portfolio of water replenishment projects that yield an estimated annual volumetric water benefit equivalent to the company’s annual global sales volume. There are three primary water replenishment project categories: 1. Watershed Protection and Restoration 2. Water Access and Sanitation 3. Water for Productive Use. The volume of water replenished is based on the estimated volume of water safely provided to communities and to nature by the replenish project portfolio. The proportion of water replenished is determined by dividing the volume of water replenished by the sales volume of company beverage products as disclosed in The Coca-Cola Company’s 10-K for fiscal year 2022. Volumetric water benefits are quantified following established and peer-reviewed methodologies described in the Corporate Water Stewardship: Achieving a Sustainable Balance (2013) or the methods described in Volumetric Water Benefit Accounting (VWBA): A Method for Implementing and Valuing Water Stewardship Activities (2019), unless an exception has been approved in writing by Corporate.</td>
</tr>
</tbody>
</table>

W10. Plastics

W10.1
W10.1 Have you mapped where in your value chain plastics are used and/or produced?

<table>
<thead>
<tr>
<th>Plastics mapping</th>
<th>Value chain stage</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>Direct operations Supply chain Product use phase</td>
</tr>
</tbody>
</table>

W10.2 Across your value chain, have you assessed the potential environmental and human health impacts of your use and/or production of plastics?

<table>
<thead>
<tr>
<th>Impact assessment</th>
<th>Value chain stage</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>Direct operations Supply chain Product use phase</td>
</tr>
</tbody>
</table>

W10.3 Across your value chain, are you exposed to plastics-related risks with the potential to have a substantive financial or strategic impact on your business? If so, provide details.

<table>
<thead>
<tr>
<th>Risk exposure</th>
<th>Value chain stage</th>
<th>Type of risk</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>Direct operations Supply chain Product use phase</td>
<td>Regulatory Reputational Technology</td>
</tr>
</tbody>
</table>

W10.4 Do you have plastics-related targets, and if so what type?

<table>
<thead>
<tr>
<th>Targets in place</th>
<th>Target type</th>
<th>Target metric</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>Plastic packaging Waste management</td>
<td>Reduce the total weight of virgin content in plastic packaging Increase the proportion of post-consumer recycled content in plastic packaging Increase the proportion of plastic packaging that is recyclable in practice and at scale Increase the proportion of plastic packaging that is reusable Increase the proportion of recyclable plastic waste that is collected, sorted, and recycled in the community</td>
</tr>
</tbody>
</table>

W10.5 Indicate whether your organization engages in the following activities.

<table>
<thead>
<tr>
<th>Activity applies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of plastic polymers</td>
<td>No</td>
</tr>
<tr>
<td>Production of durable plastic components</td>
<td>No</td>
</tr>
<tr>
<td>Production / commercialization of durable plastic goods (including mixed materials)</td>
<td>No</td>
</tr>
<tr>
<td>Production / commercialization of plastic packaging</td>
<td>No</td>
</tr>
<tr>
<td>Production of goods packaged in plastics</td>
<td>Yes</td>
</tr>
<tr>
<td>Provision / commercialization of services or goods that use plastic packaging (e.g., retail and food services)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

W10.8 Provide the total weight of plastic packaging sold and/or used, and indicate the raw material content.

<table>
<thead>
<tr>
<th>Activity applies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic packaging sold</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Plastic packaging used</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raw material content percentages available to report</th>
<th>% virgin fossil-based content</th>
<th>% virgin renewable content</th>
<th>% post-industrial recycled content</th>
<th>% post-consumer recycled content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>3474139</td>
<td>% virgin fossil-based content</td>
<td>% virgin renewable content</td>
<td>% post-industrial recycled content</td>
<td>% post-consumer recycled content</td>
<td>Total plastic packaging is primarily consumer-facing PET and excludes closure and labels. A small portion is the LPDE used in pouches. Please note that due to rounding the figures do not sum to 100%.</td>
</tr>
</tbody>
</table>

Please note that due to rounding the figures do not sum to 100%.
W10.8a

(W10.8a) Indicate the circularity potential of the plastic packaging you sold and/or used.

<table>
<thead>
<tr>
<th>Plastic packaging sold</th>
<th>Percentages available to report for circularity potential</th>
<th>% of plastic packaging that is reusable</th>
<th>% of plastic packaging that is technically recyclable</th>
<th>% of plastic packaging that is recyclable in practice at scale</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

Plastic packaging used

<table>
<thead>
<tr>
<th>% reusable</th>
<th>% technically recyclable</th>
<th>% recyclable in practice and at scale</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>99.9</td>
<td>99.9</td>
<td>Our plastic bottles are primarily PET (excluding closures and labels), which is widely recyclable in practice and at scale.</td>
</tr>
</tbody>
</table>

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman and CEO</td>
<td>Chief Executive Officer (CEO)</td>
</tr>
</tbody>
</table>

SW. Supply chain module

SW0.1

(SW0.1) What is your organization’s annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?

SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please select</td>
<td></td>
</tr>
</tbody>
</table>

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?

No
(SW3.1) Provide any available water intensity values for your organization’s products or services.

Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Please select your submission options</th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>Public</td>
</tr>
</tbody>
</table>

Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.
Yes, CDP may share our Main User contact details with the Pacific Institute

Please confirm below
I have read and accept the applicable Terms