2019 Water Replenishment Projects

<table>
<thead>
<tr>
<th>Country</th>
<th>Project Name</th>
<th>Description of Activity</th>
<th>Type of Intervention</th>
<th>Number of People Benefiting from Project</th>
<th>Ecosystem Area Protected (ha)</th>
<th>Water Replenishment Volume in 2019 (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>La Calera, Cordoba</td>
<td>Fire management within the La Calera Reserve</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>13,500</td>
<td>4,367</td>
</tr>
<tr>
<td>Australia</td>
<td>Great Barrier Reef Project (Project Catalyst)</td>
<td>Improved agricultural practices to reduce run off into the Great Barrier Reef</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>20,000</td>
<td>7,500</td>
</tr>
<tr>
<td>Austria</td>
<td>Neusiedler See Soda Lakes Restoration</td>
<td>Conservation and protection of the last remaining soda lakes</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>700</td>
<td>998</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Plant a tree - give a gift to life</td>
<td>Tree planting to reduce runoff and soil erosion</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>Belarus</td>
<td>Clean Water For the Narach Villages</td>
<td>Installation and management of a safe drinking water supply, including training of operatives and public awareness communications.</td>
<td>Drinking water supply (WASH)</td>
<td>1,000</td>
<td>n/a</td>
<td>37</td>
</tr>
<tr>
<td>Belarus</td>
<td>Let’s Save Yelnya Together!</td>
<td>Increase in water storage in natural peatlands</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>14,000</td>
<td>11,089</td>
</tr>
<tr>
<td>Belgium</td>
<td>Stappersven Wetland and Dune Habitat Restoration</td>
<td>Wetland, heathland, and dune habitat restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>Belgium</td>
<td>Demer Valley Wetland Restoration</td>
<td>Wetland habitat restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>100</td>
<td>147</td>
</tr>
<tr>
<td>Belize</td>
<td>Gallon Jug Forest Protection and Water Replenishment Project</td>
<td>Forest protection</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>100</td>
<td>111</td>
</tr>
<tr>
<td>Benin</td>
<td>RAIN Benin</td>
<td>Construction and rehabilitation of water infrastructure, capacity building for the promotion of sanitation and hygiene and maintenance of water infrastructure.</td>
<td>Drinking water supply (WASH)</td>
<td>1,000</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Watershared - Conservation of Forested Ecosystems</td>
<td>Forest conservation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>16,161</td>
<td>1,175</td>
</tr>
<tr>
<td>Brazil</td>
<td>Bolsa Floresta Program</td>
<td>Conservation of tropical forests to maintain environmental services</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>103,000</td>
<td>10,105</td>
</tr>
<tr>
<td>Brazil</td>
<td>Sao Paulo Water Fund (Green-Blue Water Coalition), Brazil</td>
<td>Ecological restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>1,423</td>
<td>26</td>
</tr>
<tr>
<td>Brazil</td>
<td>Espirito Santo Water Fund, Brazil</td>
<td>Forest Protection and Restoration in the Barra Seca Micro-Watershed</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>112</td>
<td>107</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Lower Danube Wetland Management Improvement</td>
<td>Improve monitoring and management to restore and protect wetland water levels</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>2,300</td>
<td>7,387</td>
</tr>
</tbody>
</table>

2. A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Service/Environment/Management</th>
<th>Volume</th>
<th>Unit</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>Improving Access to Water in Peri-Urban Ouagadougou</td>
<td>Drinking water supply (WASH)</td>
<td>7,390</td>
<td>n/a</td>
<td>36</td>
</tr>
<tr>
<td>Cambodia</td>
<td>Clean Water for Communities</td>
<td>Drinking water supply (WASH)</td>
<td>2,151</td>
<td>n/a</td>
<td>50</td>
</tr>
<tr>
<td>Cambodia</td>
<td>Clean Water for Communities</td>
<td>Drinking water supply (WASH)</td>
<td>5,000</td>
<td>n/a</td>
<td>110</td>
</tr>
<tr>
<td>Cambodia</td>
<td>Aquatower</td>
<td>Drinking water supply (WASH)</td>
<td>24,159</td>
<td>n/a</td>
<td>1</td>
</tr>
<tr>
<td>Cambodia</td>
<td>EKOCENTER</td>
<td>Drinking water supply (WASH)</td>
<td>4,725</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Water and Sanitation for Schools and Communities in Akonolinga and Gaschiga Councils</td>
<td>Drinking water supply (WASH)</td>
<td>5,400</td>
<td>n/a</td>
<td>25</td>
</tr>
<tr>
<td>Canada</td>
<td>WWF Restoration Fund</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
</tr>
<tr>
<td>Canada</td>
<td>Wetland Conservation in the Prairie Regions of Canada I</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>254</td>
<td>254</td>
</tr>
<tr>
<td>Canada</td>
<td>North America Rain Barrel Donation Program</td>
<td>Alternative water sources</td>
<td>n/a</td>
<td>n/a</td>
<td>33</td>
</tr>
<tr>
<td>Canada</td>
<td>St. Lawrence Restoration (St. Eugene Marsh)</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>34</td>
<td>8</td>
</tr>
<tr>
<td>Canada</td>
<td>Tommy Thompson Park Wetland Regeneration</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
<td>520</td>
</tr>
<tr>
<td>Canada</td>
<td>Wetland Conservation in the Prairie Region of Canada II</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>49</td>
<td>121</td>
</tr>
<tr>
<td>Canada</td>
<td>Restoring the Bow River Watershed</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>61</td>
<td>11</td>
</tr>
<tr>
<td>Canada</td>
<td>Restoring the Bow River Watershed</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>15</td>
<td>68</td>
</tr>
<tr>
<td>Canada</td>
<td>Wetland Conservation in the Prairie Region of Canada III</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>198</td>
<td>490</td>
</tr>
<tr>
<td>Canada</td>
<td>Maitland River</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Canada</td>
<td>Restoring Lake Erie Wetlands and Coastal Habitats, Lake Erie, Great Lakes</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Ecosystem Protection/Restoration</th>
<th>Water Efficiency</th>
<th>Conserved Water</th>
<th>Volume (Millions of m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Shining a Light on Freshwater in St. John, New Brunswick</td>
<td>Culvert removal (Newman’s Brook) and revegetation (Newman’s and Caledonia Brook)</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Canada</td>
<td>Chase Woods Wetland Restoration</td>
<td>Wetland and stream restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>2</td>
</tr>
<tr>
<td>Canada</td>
<td>Wetland Conservation in the Prairie Region of Canada IV</td>
<td>Wetland protection and restoration, conservation easements</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>176</td>
</tr>
<tr>
<td>Chile</td>
<td>Wetland restoration in highland indigenous communities of Alto Tarapacá, I Region, Chile</td>
<td>Vegetation management to restore or improve wetland function</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>333</td>
</tr>
<tr>
<td>Chile</td>
<td>Restoration in Viña del Mar National Botanical Garden, Chile</td>
<td>Soil conservation, reforestation, and fire prevention</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>236</td>
</tr>
<tr>
<td>China</td>
<td>Water resource utilization and land management - Yellow River basin in Shandong province</td>
<td>Restoring storage capacity of 5 small reservoirs</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Improving River Management Practices in the Yangtze</td>
<td>Construction of treatment wetlands</td>
<td>Water quality improvement</td>
<td>223</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Improving River Management Practices in the Yangtze</td>
<td>Irrigation improvement for ecosystem (Anlong Village)</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Chongming Dongtan National Nature Reserve (NNR)</td>
<td>Wetland water level management</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>191</td>
</tr>
<tr>
<td>China</td>
<td>Improving River Management Practices in the Yangtze</td>
<td>Wetland restoration (Yunjiao Village)</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>9</td>
</tr>
<tr>
<td>China</td>
<td>Improving River Management Practices in the Yangtze</td>
<td>Construction of three biogas digesters to convert animal waste to biogas</td>
<td>Water quality improvement</td>
<td>6</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Jialing River Basin - green certificate</td>
<td>Sustainable agriculture including land leveling, inter-planting, reducing fertilizers, herbicides and pesticides</td>
<td>Conservation agriculture</td>
<td>n/a</td>
<td>333</td>
</tr>
<tr>
<td>China</td>
<td>Jialing River Basin - wetland restoration</td>
<td>Wetland and lake creation and restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>4</td>
</tr>
<tr>
<td>China</td>
<td>Wetland treatment to improve quality of Lake Wuliangsu</td>
<td>Construction of a pilot pond for wetland treatment and aquaculture development</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>13</td>
</tr>
<tr>
<td>China</td>
<td>Demonstration Project for Soil and Water Conservation and Ecological Engineering in the Middle and Upper Reaches of the Yellow River (Chishuihe)</td>
<td>Agricultural practices, revegetation, and gully structures</td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td>n/a</td>
<td>560</td>
</tr>
<tr>
<td>China</td>
<td>Demonstration Project for Soil and Water Conservation and Ecological Engineering in the Middle and Upper Reaches of the Yellow River (Yanwachuan)</td>
<td>Agricultural practices, hillside and gully structures</td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td>n/a</td>
<td>528</td>
</tr>
<tr>
<td>China</td>
<td>River-Lake Reconnection Project - Tian-e-zhou Oxbow Dolphin Habitat Improvement</td>
<td>Hydrologic reconnection of sidearm of the river</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>55,300</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Initiative/Project Description</th>
<th>Improvement/Restoration</th>
<th>Ecosystem Protection/Rehabilitation</th>
<th>Volume (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Guangxi Sustainable Sugarcane Initiative: Phase II Conversion of flood irrigation to drip irrigation (Jiangzhou District)</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>508</td>
</tr>
<tr>
<td>China</td>
<td>Guangxi Sustainable Sugarcane Initiative: Phases I and II New irrigation supply and improved irrigation efficiency (Shangsi County)</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>650</td>
</tr>
<tr>
<td>China</td>
<td>Guangxi Sustainable Sugarcane Initiative: Phase II Conversion of flood irrigation to spray irrigation (Fusui County)</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>915</td>
</tr>
<tr>
<td>China</td>
<td>Guangxi Sustainable Sugarcane Initiative: Phases I and II Conversion of flood irrigation to drip irrigation (Chongzuo City)</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>663</td>
</tr>
<tr>
<td>China</td>
<td>Water Resources Management and Ecological Rehabilitation in the Mainstream Area of Tarim River Basin</td>
<td>Irrigation water for productive use</td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Water Resources Management and Ecological Rehabilitation in the Mainstream Area of Tarim River Basin</td>
<td>Irrigation system improvements (drip irrigation)</td>
<td>Water efficiency</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Urban Wetland Restoration in Zhengzhou City</td>
<td>Wastewater reuse for conservation</td>
<td>Water quality improvement</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Flood Utilization and Ecosystem Management in the Haihe Basin</td>
<td>Flood water management for agricultural use, fish ponds, wetland and groundwater recharge.</td>
<td>Alternative water sources</td>
<td>n/a</td>
</tr>
<tr>
<td>China</td>
<td>Water treatment and waterborne disease control</td>
<td>Development of a sewage pipe network to collect and route sewage from rural areas of Chongzuo City to a wastewater treatment plant to improve water quality in the Jinma River.</td>
<td>Water quality improvement</td>
<td>23,701</td>
</tr>
<tr>
<td>Colombia</td>
<td>Agua Somos Water Fund - Siecha, Blanco, Teusacá and Aves Watersheds</td>
<td>Watershed conservation and restoration</td>
<td>Ecosystem protection/restoration</td>
<td>21</td>
</tr>
<tr>
<td>Colombia</td>
<td>Rio Grande – Rio Chico Watershed, Corporación Cuenca Verde</td>
<td>Forest conservation, grassland restoration, and pasture restoration</td>
<td>Ecosystem protection/restoration</td>
<td>17</td>
</tr>
<tr>
<td>Colombia</td>
<td>The Paramo conservation Las Mercedes, Bogotá</td>
<td>Conservation agreement to protect and restore the Paramo</td>
<td>Ecosystem protection/restoration</td>
<td>1</td>
</tr>
<tr>
<td>Colombia</td>
<td>Paramo Protection in the Santuario Watershed, Tausa Municipality</td>
<td>Conservation agreement to protect and maintain Paramo</td>
<td>Ecosystem protection/restoration</td>
<td>2</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Agua Tica Water Fund - Greater Tarcoles River Watershed I</td>
<td>Conservation agreements and fencing to protect forest areas with native cloud mountain forest species</td>
<td>Ecosystem protection/restoration</td>
<td>2</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Agua Tica Water Fund - Greater Tarcoles River Watershed II</td>
<td>Reforestation, conservation agreements and fencing to protect and restore forests</td>
<td>Ecosystem protection/restoration</td>
<td>3</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Forest Conservation in the Greater Tarcoles River Watershed III</td>
<td>Conservation agreements and fencing to protect forests</td>
<td>Ecosystem protection/restoration</td>
<td>2</td>
</tr>
<tr>
<td>Croatia / Serbia</td>
<td>Living Danube: Reconnecting the Lifeline - Kopacki Rit</td>
<td>Wetland restoration and reconnection to the Danube river for flood protection</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
<tr>
<td>Croatia / Serbia</td>
<td>Living Danube: Reconnecting the Lifeline - Gornje Podunavlje</td>
<td>Wetland restoration and reconnection to the Danube river for flood protection</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Outcome Description</th>
<th>Sector</th>
<th>Volumetric Benefits</th>
<th>Environmental Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprus</td>
<td>Mission Water – Non-Conventional Water Resources Program in Cyprus</td>
<td>Installation and restoration of grey water recycling systems for non-potable uses</td>
<td>Water efficiency</td>
<td>80,816</td>
<td>n/a</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Forest Conservation in the Higua River Watershed - Yaque del Norte Water Fund</td>
<td>Conservation agreements to protect forests, restoration with shade coffee and silvopasture, fencing and revegetation</td>
<td>Ecosystem protection/restoration</td>
<td>41</td>
<td>237</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Forest Protection and Restoration in the Haina-Duey Subwatershed – Santo Domingo Water Fund</td>
<td>Conservation agreements for forest protection; revegetation and silvopasture</td>
<td>Ecosystem protection/restoration</td>
<td>64</td>
<td>233</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Forest Protection and Restoration in the Mahomita Microwatershed – Santo Domingo Water Fund</td>
<td>Conservation agreements for forest protection, restoration with shade coffee, revegetation and riparian forest restoration</td>
<td>Ecosystem protection/restoration</td>
<td>90</td>
<td>219</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Forest Protection and Restoration in the Haina-Duey Subwatershed – Santo Domingo Water Fund</td>
<td>Conservation agreements for forest protection, restoration with shade coffee, revegetation and riparian forest restoration</td>
<td>Ecosystem protection/restoration</td>
<td>64</td>
<td>233</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Protection and Restoration of Natural Paramo Areas in the Guambi Watershed – Quito Water Fund (FONAG)</td>
<td>Conservation agreements, fencing and revegetation to protect and restore high-montane paramo vegetation</td>
<td>Ecosystem protection/restoration</td>
<td>26</td>
<td>298</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Forest conservation in the Daule River watershed</td>
<td>Conservation agreement to protect lowland dry forest</td>
<td>Ecosystem protection/restoration</td>
<td>5</td>
<td>159</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Passive Restoration and Conservation in the Yanuncay Watershed – FONAPA water fund</td>
<td>Conservation agreement and fencing to protect Andean Forest; Cattle exclusion for paramo and high montane Andean forest restoration</td>
<td>Ecosystem protection/restoration</td>
<td>1</td>
<td>284</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Passive restoration in the Paute Watershed – Paute Water Fund FONAPA</td>
<td>Agreements for restoration and Andean forest reforestation</td>
<td>Ecosystem protection/restoration</td>
<td>2,300</td>
<td>49</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Paramo Conservation and Protection, Revegetation, and Restoration in the Carnero Yata Watershed, Ecuador</td>
<td>Conservation agreements and fencing for paramo restoration and protection; and paramo revegetation</td>
<td>Ecosystem protection/restoration</td>
<td>252</td>
<td>122</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Paramo Restoration and Protection in the Atacazo Watershed, Ecuador</td>
<td>Conservation agreement, fencing and livestock exclusion for paramo restoration and protection</td>
<td>Ecosystem protection/restoration</td>
<td>33</td>
<td>110</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Restoration in the Río Blanco watershed, Ecuador</td>
<td>Revegetation with native species</td>
<td>Ecosystem protection/restoration</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Egypt</td>
<td>Recycling of Crop Residues in Upper Egypt</td>
<td>Sustainable Agriculture Promotion: Improvement of soils and yields, reduction of GHG emissions and irrigation demand through composting</td>
<td>Conservation agriculture</td>
<td>n/a</td>
<td>147</td>
</tr>
<tr>
<td>Egypt</td>
<td>Non-Revenue Water Reduction Program in Sohag Governorate</td>
<td>Leak detection and repair</td>
<td>Water efficiency</td>
<td>24,750</td>
<td>n/a</td>
</tr>
<tr>
<td>Egypt</td>
<td>Environmental Services for Improving Water Quality Management</td>
<td>Constructed wastewater treatment facilities</td>
<td>Water quality improvement (WASH)</td>
<td>80,000</td>
<td>n/a</td>
</tr>
<tr>
<td>Egypt</td>
<td>Community Water Connections and Health Improvement</td>
<td>Provided full access to water through household connections</td>
<td>Drinking water supply (WASH)</td>
<td>7,505</td>
<td>n/a</td>
</tr>
<tr>
<td>Egypt</td>
<td>Raising Healthy Children with Safe Household Water Supply and Sanitation</td>
<td>Provided access to household water connections</td>
<td>Drinking water supply (WASH)</td>
<td>5,000</td>
<td>n/a</td>
</tr>
<tr>
<td>Egypt</td>
<td>Egypt Livelihood Program</td>
<td>Water connections in homes and constructed a new filtration unit.</td>
<td>Drinking water supply (WASH)</td>
<td>1,940</td>
<td>n/a</td>
</tr>
<tr>
<td>Egypt</td>
<td>“Drink Pure Water” Project</td>
<td>Connected 250 homes to potable water.</td>
<td>Drinking water supply (WASH)</td>
<td>1,250</td>
<td>n/a</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.

Classified - Confidential
<table>
<thead>
<tr>
<th>Country</th>
<th>Program</th>
<th>Activity Description</th>
<th>Benefit Category</th>
<th>Volumes/Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypt</td>
<td>Egypt Livelihood Program</td>
<td>Improved water access in 17 new villages as part of Coca-Cola Egypt’s 100 Villages Program, which aims to develop 100 villages by year 2020.</td>
<td>Drinking water supply (WASH)</td>
<td>33,080</td>
</tr>
<tr>
<td>Egypt</td>
<td>Egypt Livelihood Program</td>
<td>Installed new potable water connections and made repairs to the main sanitation unit.</td>
<td>Drinking water supply (WASH)</td>
<td>1,120</td>
</tr>
<tr>
<td>Egypt</td>
<td>Egypt Livelihood Program</td>
<td>Connects homes to the water distribution system and increased water access through a new well</td>
<td>Drinking water supply (WASH)</td>
<td>6,357</td>
</tr>
<tr>
<td>Egypt</td>
<td>Egypt Livelihood Program</td>
<td>Connected 261 homes to the water distribution system.</td>
<td>Drinking water supply (WASH)</td>
<td>29,000</td>
</tr>
<tr>
<td>Egypt</td>
<td>Improving Water Management in Upper Egypt:</td>
<td>Demonstration project on use of a greenhouse cultivation model in marginal and sub-marginal lands with a hydroponic system</td>
<td>Conservation agriculture</td>
<td>540</td>
</tr>
<tr>
<td>Egypt</td>
<td>Improving Water Management in Upper Egypt:</td>
<td>Demonstration project on generation and application of compost on fields near a hydroponic-greenhouse system.</td>
<td>Conservation agriculture</td>
<td>n/a</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Reforestation and Protection in Santa Maria</td>
<td>Reforestation and forest conservation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>(Natural Protected Area)</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Multiple Use Water Improvements in Seven</td>
<td>Investments in WASH in the selected Woredas supported an integrated approach to WASH (safe water, sanitation, and hygiene education.)</td>
<td>Drinking water supply (WASH)</td>
<td>47,766</td>
</tr>
<tr>
<td></td>
<td>Rural Ethiopian Woredas</td>
<td></td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Full access to WASH for Tigray region,</td>
<td>Construction of water points</td>
<td>Drinking water supply (WASH)</td>
<td>48,330</td>
</tr>
<tr>
<td></td>
<td>Ethiopia (WV)</td>
<td></td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>France</td>
<td>Camargue Wetland Restoration</td>
<td>Wetland restoration of coastal zone</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,527</td>
</tr>
<tr>
<td>Germany</td>
<td>Alte Elbe Oxbow Restoration</td>
<td>Oxbow restoration from Old Elbe river and removal of sediment</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Ghana</td>
<td>Safe Water for Africa</td>
<td>Construction of Water Health Centers with a decentralized water treatment facility to purify and disinfect contaminated waters. The centers charge an affordable fee for the water and provide employment of three to five community members who operate the system.</td>
<td>Drinking water supply (WASH)</td>
<td>35,750</td>
</tr>
<tr>
<td>Ghana</td>
<td>Ghana (WSUP)</td>
<td>Construction of double-spout standpipes, creating access for 45,000 people and economically empowering 75 women as standpipe operators/vendors.</td>
<td>Drinking water supply (WASH)</td>
<td>45,000</td>
</tr>
<tr>
<td>Ghana and Ivory</td>
<td>Trans boundary Community Water Management</td>
<td>Improved watershed management, construction of water supply and sanitation infrastructure, capacity building for sustainability, and conflict prevention activities in the trans-boundary Tano River basin.</td>
<td>Drinking water supply (WASH)</td>
<td>10,049</td>
</tr>
<tr>
<td>Great Britain</td>
<td>River Nar Land Management Improvements</td>
<td>Land management best practices by farmers and silt-trap/small wetland installations</td>
<td>Conservation agriculture</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>822</td>
</tr>
<tr>
<td>Great Britain</td>
<td>CamEO and Broadlands Rivers Land Management</td>
<td>Land management best practices by farmers and silt-trap/small wetland installations</td>
<td>Conservation agriculture</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Improvements</td>
<td></td>
<td></td>
<td>1,042</td>
</tr>
</tbody>
</table>

2. A megaliter (ML) is one million (1,000,000) litres.
| Area | Project Description | Benefits | Ecosystem protection/restoration | n/a | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 2 |
|---------------|--|---|----------------------------------|-----|Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.|-----| 2 |
| Great Britain | Replenishing aquifers and chalk streams in South East England Three sub-projects in and around London to treat pollution through urban wetlands and downstream defender and restoration of rare remnant peat wetland | Ecosystem protection/restoration | n/a | 20 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 286 |
| Greece | Water for the City, Alexandroupolis, Greece Upgrade to city water reservoir to retain more water during high flow periods | Drinking water supply (WASH) | n/a | 85,000 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 1,700 |
| Greece | Rainwater Harvesting Program Reintroducing rainwater harvesting as a cost effective practice for water availability in the water scarce Greek islands and a tool for climate change adaptation at the local level as part of the broader “Mission Water” Environmental Program by the Coca-Cola System in Greece. | Alternative water sources | N/A | 91,127 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | N/A | 533 |
| Guatemala | Xaya-Pixcaya Watershed Forest protection, agroforestry promotion, and reforestation | Ecosystem protection/restoration and conservation agriculture | n/a | 950 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 366 |
| Guatemala | El Zapote Watershed, Cordillera Alux Forest Reserve Forest protection and conservation | Ecosystem protection/restoration | 14 | 350 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | 21 | 21 |
| Guatemala | Los Ocote, Tecincte and Villalobos East Watersheds Forest protection, agroforestry and reforestation | Ecosystem protection/restoration | 318 | 791 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | 478 | 478 |
| Guatemala | Pasabien Watershed Fire prevention and forest protection | Ecosystem protection/restoration | 500 | n/a | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | 400 | 400 |
| Honduras | Rio Chameleon River Watershed Protection Initiative Agroforestry and forest protection | Ecosystem protection/restoration and conservation agriculture | n/a | 945 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | 861 | 861 |
| Hungary | Old Drava Restoration in the MDD Transboundary Biosphere Reserve Restore water levels and habitats along an oxbow lake of the Drava River on the Hungary-Croatia border. | Ecosystem protection/restoration | 105 | n/a | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | 88 | 88 |
| India | Construction of Check Dams in Rajasthan, Himachal Pradesh, Gujarat, Madhya Pradesh and Uttar Pradesh, India Check dam construction for recharge | Enhance infiltration | n/a | 78,500 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 11,534 |
| India | Rehabilitation of Farm Ponds Across India Desilting and rejuvenation of farm ponds | Enhance infiltration | n/a | 98,000 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 9,526 |
| India, Nepal | Rainwater Harvesting and Aquifer Recharge Rainwater harvesting structures and recharge shafts | Enhance infiltration | n/a | n/a | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 4,302 |
| India, Sri Lanka | Reverse Osmosis Water Supply Built reverse osmosis plant for community-based organization to manage clean and safe, potable water | Drinking water supply (WASH) | n/a | 50,110 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 366 |
| Indonesia | Water Reservoir for Future Life, Magelang, Central Java Establishment of 865 infiltration wells for artificial aquifer recharge of rainwater | Enhance infiltration | n/a | n/a | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | 20 | 175 |
| Indonesia | Rain Water Harvesting, Malang, East Java Establishment of 800 infiltration wells for artificial aquifer recharge of rainwater in Malang, East Java | Enhance infiltration | n/a | 14,750 | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 629 |
| Indonesia | Construction of infiltration wells in Mojokerto, Indonesia Establishment of infiltration wells for artificial aquifer recharge of rainwater | Enhance infiltration | n/a | n/a | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 392 |
| Indonesia | Construction of infiltration wells in Salatiga and Semarang, Central Java, Indonesia Establishment of infiltration wells for artificial aquifer recharge of rainwater | Enhance infiltration | n/a | n/a | Projects delivering volumetric water benefits against global TCCC replenish volume in 2019. | n/a | 528 |

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Benefits</th>
<th>Water Efficiency</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>Embung (Rainwater Harvesting Pond) in Wonogiri, Central Java</td>
<td>Construction of rainwater harvesting ponds to support agricultural practices of farmers</td>
<td>Alternative water sources</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Construction of rainwater harvesting ponds to support agricultural practices of farmers</td>
<td>Water efficiency</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Iraq</td>
<td>Enhancing Community Resilience Through Sustainable Water Resource Management in Iraq</td>
<td>Repaired broken distribution pipes</td>
<td>Water efficiency</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>541</td>
</tr>
<tr>
<td>Iraq</td>
<td>Replenishing Water in the Southern Iraqi Marshlands</td>
<td>Wastewater treatment plant construction</td>
<td>Water quality improvement (WASH)</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water quality improvement (WASH)</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water quality improvement (WASH)</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Italy</td>
<td>Non-Conventional Water Resources Programme in Italy</td>
<td>Installation of green roofs for rainwater harvesting</td>
<td>Water efficiency</td>
<td>2,780</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Japan</td>
<td>Protecting Forests from Land Development</td>
<td>Forest protection from development</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration</td>
<td></td>
<td>8,562</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration</td>
<td></td>
<td>15,265</td>
</tr>
<tr>
<td>Japan</td>
<td>Forest Maintenance in Japan</td>
<td>Forest maintenance to ensure healthy forest</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Japan</td>
<td>Conservation of existing land cover</td>
<td>Conservation of grassland</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>Japan</td>
<td>Rice Paddy Field as Infiltration Basins (at Kumamoto)</td>
<td>Rehabilitate abandoned rice fields for rice cultivation and utilize the fields as retention basins to promote water recharge</td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>Japan</td>
<td>Rice Paddy Field as Infiltration Basins (at Etina)</td>
<td>Restoration of abandoned rice paddies to promote water recharge</td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td></td>
<td>403</td>
</tr>
<tr>
<td>Jordan</td>
<td>Promoting wildlife conservation and the socio-economic development of rural areas</td>
<td>Rainwater harvesting for Al Ma’wa wildlife reserve to increase water availability during the dry season and support socio-economic development</td>
<td>Alternative water sources</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative water sources</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative water sources</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Jordan</td>
<td>Greening Public Buildings: Community Model for Scarce Resources Adaptation and Replication</td>
<td>Rainwater harvesting</td>
<td>Alternative water sources</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative water sources</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative water sources</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Jordan</td>
<td>Improving Sustainability of WASH Service Delivery in Za’atari and Azraq Camps in Jordan</td>
<td>Installation of water-saving devices in households and greywater reuse systems in schools and community centers</td>
<td>Water efficiency</td>
<td>20,856</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Jordan</td>
<td>Water Conservation in Mleiha-Madaba</td>
<td>Installation of water-saving fixtures in households and a greywater reuse system in a school</td>
<td>Water efficiency</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Improving Irrigation canals in Jambyl Oblast</td>
<td>Restoration and improvements to two critical irrigation canals to 6000+ha of agriculture production area</td>
<td>Water efficiency</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>1,479</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Demonstration of improved water use practices in the forest sector of the Aralsk Rayon, Kyzylorda Oblast</td>
<td>Irrigation canal improvements and drip irrigation</td>
<td>Water efficiency</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Demonstration of water-saving agriculture technologies in the South Kazakhstan Region</td>
<td>Regenerative agriculture demonstration project with water saving technologies, crop diversification and agroforestry practices</td>
<td>Conservation agriculture</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservation agriculture</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservation agriculture</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Demonstration of water-saving agriculture technologies for crop cultivation Kyzylorda Region</td>
<td>Water efficiency through laser leveling of fields and installation of drip irrigation for food production</td>
<td>Water efficiency</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water efficiency</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Organization</th>
<th>Description</th>
<th>Category</th>
<th>Number</th>
<th>Cost</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>Mara River Basin Water & Development Alliance</td>
<td>Full access to water through the construction of protected and shallow springs and boreholes; limited access to water through tanks constructed in schools and access to sanitation through the construction of Ventilated Improved Pit (VIP) latrines.</td>
<td>Drinking water supply (WASH)</td>
<td>8,704</td>
<td>n/a</td>
<td>18</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kenya MWA: Safe Water Enterprises in Isiolo County, Kenya</td>
<td>Increase access to safe water in Isiolo County by supporting the Isiolo Water and Sewerage company to develop and expand distribution pipelines and storage facilities to boost their capacity</td>
<td>Drinking water supply (WASH)</td>
<td>11,320</td>
<td>n/a</td>
<td>42</td>
</tr>
<tr>
<td>Kenya</td>
<td>Securing Water for People and Nature: Replenishing by Protecting the Upper Tana Watershed for Nairobi, Kenya</td>
<td>Planting of 50,000 tree seedlings to restore vegetative land cover, reduce run-off causing erosion and turbidity of downstream water supply</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>Kenya</td>
<td>Securing Water for People and Nature: Replenishing by Protecting the Upper Tana Watershed for Nairobi, Kenya</td>
<td>Construction of rainwater harvesting water pans to collect irrigation water and installation of low-drip irrigation systems for smallholder farmers.</td>
<td>Alternative water sources</td>
<td>26,174</td>
<td>n/a</td>
<td>34</td>
</tr>
<tr>
<td>Kenya</td>
<td>Morulem Water Users Association</td>
<td>Construction and rehabilitation of secondary irrigation canals and flow structures to improve water access for smallholder farmers in Turkana county</td>
<td>Alternative water sources</td>
<td>2,264</td>
<td>458</td>
<td>987</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Rehabilitation of irrigation canals in Naryn Region</td>
<td>Rehabilitation of Canal Kara-Talaa and Canal Kyzyl-Jyldyz to enhance water supply for regional irrigation</td>
<td>Alternative water sources</td>
<td>4,065</td>
<td>n/a</td>
<td>1,736</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Rehabilitation of irrigation canals in Naryn Region</td>
<td>Rehabilitation of Sary-Koo and Kara-Seki canals to enhance water supply for regional irrigation</td>
<td>Alternative water sources</td>
<td>525</td>
<td>612</td>
<td>159</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Improving access to drinking water, and hygiene and sanitation practices in rural Kyrgyzstan</td>
<td>Established an improved drinking water supply for the village of Karymy including a chlorinator and water storage tanks.</td>
<td>Drinking water supply (WASH)</td>
<td>2,800</td>
<td>n/a</td>
<td>15</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Improving access to drinking water in Momunov settlement</td>
<td>Provided a new 5.9 km water network and connected taps for 60 households to provide year-round sustainable access to drinking water.</td>
<td>Drinking water supply (WASH)</td>
<td>250</td>
<td>n/a</td>
<td>1</td>
</tr>
<tr>
<td>Lebanon</td>
<td>A Water Wise Village, Menjez, Akkar Region</td>
<td>Conversion of flood irrigation to drip irrigation</td>
<td>Water efficiency</td>
<td>40</td>
<td>n/a</td>
<td>199</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Waterwise Schools - Chouf Pilot Project</td>
<td>Replaced existing faucets with newer models and added aerators</td>
<td>Water efficiency</td>
<td>5,486</td>
<td>n/a</td>
<td>28</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Waterwise Schools - Chouf Pilot Project</td>
<td>Installed rainwater harvesting systems in nine schools for irrigation and education purposes</td>
<td>Alternative water sources</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Waterwise is Life - Chouf District</td>
<td>Add aerators to existing faucets in thirteen school buildings</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>11</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Waterwise is Life - Chouf District</td>
<td>Installing rainwater harvesting systems in ten school buildings</td>
<td>Alternative water sources</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Waterwise is Life - Mount Lebanon</td>
<td>Conversion from flood to drip irrigation for smallholder farmers</td>
<td>Water efficiency</td>
<td>40</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Liberia</td>
<td>WASH Entrepreneur Livelihood and Learning Project</td>
<td>Installation and repair of 370 wells</td>
<td>Drinking water supply (WASH)</td>
<td>65,424</td>
<td>n/a</td>
<td>193</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Organization</th>
<th>Project Description</th>
<th>Sector</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madagascar</td>
<td>WSUP RAIN Madagascar</td>
<td>Leak detection and repair in Antananarivo to reduce non-revenue water and increase access to water for underserved urban communities</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>1,002</td>
</tr>
<tr>
<td>Madagascar</td>
<td>RAIN Madagascar (WSUP I)</td>
<td>Demonstrated effective and financially viable service delivery models allowing for improved water access in low income areas. 92 WASH facilities (water kiosks and laundry blocks) were designed to suit their local environment and context: 76 water kiosks and 16 laundry blocks were constructed.</td>
<td>Drinking water supply (WASH)</td>
<td>46,000</td>
<td>n/a</td>
<td>217</td>
</tr>
<tr>
<td>Madagascar</td>
<td>RAIN Madagascar (WSUP II)</td>
<td>Following up on a previous project, 33 water kiosks were installed to suit the local environment and context in an expansion of the previous project. This project also had a leak reduction and repair component.</td>
<td>Drinking water supply (WASH)</td>
<td>16,500</td>
<td>n/a</td>
<td>90</td>
</tr>
<tr>
<td>Madagascar</td>
<td>RAIN Madagascar (WSUP III)</td>
<td>Following up on a previous RAIN project a total of 65 water kiosks and 10 laundry blocks were constructed in this project. This project also had a leak reduction and repair component</td>
<td>Drinking water supply (WASH)</td>
<td>142,500</td>
<td>n/a</td>
<td>649</td>
</tr>
<tr>
<td>Malawi</td>
<td>Protecting Water for People and Nature</td>
<td>Rehabilitation of gravity-fed water supply scheme and protected springs</td>
<td>Drinking water supply (WASH)</td>
<td>23,000</td>
<td>n/a</td>
<td>74</td>
</tr>
<tr>
<td>Malawi</td>
<td>Reaching Everyone in Chikhwawa District in Southern Malawi</td>
<td>Installation of 27 AfriDev Handpumps</td>
<td>Drinking water supply (WASH)</td>
<td>6,750</td>
<td>n/a</td>
<td>49</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Water for Life</td>
<td>Rehabilitation of degraded peak swamp forest via controlling outflow of water and planting of new trees</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>22</td>
<td>3,449</td>
</tr>
<tr>
<td>Malta</td>
<td>Malta Alter Aqua</td>
<td>Restoration, innovation and education for non-conventional water resources, e.g. rainwater storage, distribution systems, greywater recycling systems.</td>
<td>Alternative water sources</td>
<td>53,566</td>
<td>n/a</td>
<td>14</td>
</tr>
<tr>
<td>Mauritania</td>
<td>RAIN Mauritania (World Vision)</td>
<td>Rehabilitated 60 community water points</td>
<td>Drinking water supply (WASH)</td>
<td>72,960</td>
<td>n/a</td>
<td>309</td>
</tr>
<tr>
<td>Mexico</td>
<td>TCCC-WWF Partnership: Rio Grande / Rio Bravo Basin</td>
<td>Modernized irrigation system in the Rio Conchos – Delicias District</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>90,589</td>
<td>119</td>
</tr>
<tr>
<td>Mexico</td>
<td>TCCC-WWF Partnership: Rio Grande / Rio Bravo Basin</td>
<td>Rio Conchos - Acquisition of water rights, and conservation of spring and its endemic biota</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>4</td>
<td>1,214</td>
</tr>
<tr>
<td>Mexico</td>
<td>Mexico Restoration & Reforestation Program</td>
<td>Reforestation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>64,172</td>
<td>11,971</td>
</tr>
<tr>
<td>Mexico</td>
<td>Mexico Restoration & Reforestation Program</td>
<td>Ground restoration (infiltration trenches)</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>3,878</td>
<td>8,812</td>
</tr>
<tr>
<td>Mexico</td>
<td>Reforestation Efforts at the Monarcha Butterfly Bioreserve</td>
<td>Reforestation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>2,000</td>
<td>970</td>
</tr>
<tr>
<td>Mexico</td>
<td>Rain Water Harvesting Program in Mexico for Artificial Aquifer Recharge</td>
<td>Rainwater harvesting and artificial aquifer recharge</td>
<td>Enhance infiltration</td>
<td>n/a</td>
<td>n/a</td>
<td>22</td>
</tr>
<tr>
<td>Mexico</td>
<td>Reforestation in El Refugio</td>
<td>Reforestation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>95</td>
<td>69</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Beneficiary</th>
<th>Result</th>
<th>Volume (ML)</th>
<th>Cost (USD)</th>
<th>Volumetric Water Benefit (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td>Protecting the Rio Grande / Rio Bravo River</td>
<td>Rio Conchos - Rainwater harvesting</td>
<td>Alternative water sources</td>
<td>2,127</td>
<td>n/a</td>
<td>1</td>
</tr>
<tr>
<td>Morocco</td>
<td>RAIN Project for the Rehabilitation of Palm Plantations in Southern Morocco</td>
<td>Irrigation improvements</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>122</td>
<td>803</td>
</tr>
<tr>
<td>Mozambique</td>
<td>RAIN Mozambique (WSUP)</td>
<td>Safe and sustainable drinking water to target peri-urban communities of Maputo and improved the capacity of Aguas da Região de Maputo (AdeM), the water utility, to reduce non-revenue water (NRW).</td>
<td>Drinking water supply (WASH)</td>
<td>62,397</td>
<td>n/a</td>
<td>91</td>
</tr>
<tr>
<td>Myanmar</td>
<td>Integrated Community Water Management Program</td>
<td>Agri-businesses improved through water access for producers in Seikphyu Township</td>
<td>Alternative water sources</td>
<td>1,193</td>
<td>178</td>
<td>70</td>
</tr>
<tr>
<td>Namibia</td>
<td>Namibia (NRCS): Water Supply to the Kavango Regions</td>
<td>Installed new boreholes and solar pumps in 7 communities; two pipeline extensions to communities without potable water; fenced in the water point in 5 communities susceptible to livestock contamination; disinfected the headworks and water tanks in 19 communities.</td>
<td>Drinking water supply (WASH)</td>
<td>11,150</td>
<td>n/a</td>
<td>70</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Safe Water for Africa</td>
<td>Construction of WaterHealth Centers providing WASH education. Each WHC is a decentralized water treatment facility to purify and disinfect contaminated waters. The centers charge an affordable fee for the water and provide employment of community members to operate the system.</td>
<td>Drinking water supply (WASH)</td>
<td>9,750</td>
<td>n/a</td>
<td>71</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Improved Health and Livelihoods in Rural Communities</td>
<td>Full access to water and sanitation by constructing boreholes, tap stands, a well, and latrines. Farmers benefited from sustainable smallholder agriculture.</td>
<td>Drinking water supply (WASH)</td>
<td>66,000</td>
<td>n/a</td>
<td>266</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Rural WASH Sector Support in Abia and Cross River States</td>
<td>Improved and expanded access to safe, affordable, sustainable and reliable water and sanitation services in 58 rural communities</td>
<td>Drinking water supply (WASH)</td>
<td>46,000</td>
<td>n/a</td>
<td>178</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Environment Conservation & Watershed Management</td>
<td>Afforestation, forest conservation, treatment of eroding streams, improved agricultural lands</td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td>n/a</td>
<td>234</td>
<td>198</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Water for Women – Rainwater Harvesting and Enhancing Groundwater Recharge Through Rehabilitation of Reservoirs</td>
<td>Rehabilitation of 28 reservoirs in Thatta District</td>
<td>Enhance infiltration</td>
<td>15,000</td>
<td>n/a</td>
<td>150</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Integrated water resource management in Northern Pakistan</td>
<td>Construction of water supply pipeline for irrigation</td>
<td>Alternative water sources</td>
<td>4,000</td>
<td>354</td>
<td>2,026</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Treated wastewater for irrigation reuse - Rahimyar Khan plant</td>
<td>Wastewater treatment and reuse for irrigation</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>157</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Environment Conservation & Watershed Management</td>
<td>Established 61 roof water harvesting schemes</td>
<td>Alternative water sources</td>
<td>12,270</td>
<td>n/a</td>
<td>8</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Integrated Water Resource Management for Food Security, Safe Drinking Water and Sanitation Services</td>
<td>Constructed 17 points for safe drinking water including 51 taps that have undergone water quality testing.</td>
<td>Drinking water supply (WASH)</td>
<td>4,000</td>
<td>n/a</td>
<td>29</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Rotary Pakistan Solar Water Filtration Plants (New World 2nd Generation)</td>
<td>Installed seven water filtration plants</td>
<td>Drinking water supply (WASH)</td>
<td>140,000</td>
<td>n/a</td>
<td>6</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.

2 A megaliter (ML) is one million (1,000,000) litres.

Classified - Confidential
<table>
<thead>
<tr>
<th>Country</th>
<th>Description</th>
<th>Benefits</th>
<th>Water Efficiency</th>
<th>Meters</th>
<th>Measured in Millions (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
<td>Provision of Safe Drinking Water and Sanitation Facilities in UC Kharoro Syed of Umerkott</td>
<td>Provided households with biosand water filters and hand pumps</td>
<td>Drinking water supply (WASH)</td>
<td>5,250</td>
<td>n/a</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Paani - Safe Water Initiative</td>
<td>Constructed 15 water filtration plants</td>
<td>Drinking water supply (WASH)</td>
<td>923,553</td>
<td>n/a</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Rotary Pakistan Solar Water Filtration Plants (New World 3rd Generation)</td>
<td>Installed five water filtration plants in highly populated migrant communities</td>
<td>Drinking water supply (WASH)</td>
<td>100,000</td>
<td>n/a</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Integrated Watershed Management and Livelihood Improvement Project in Selected Sub-Catchments of Khanpur Dam</td>
<td>Installed thirty five filtration units in rural areas around the Khanpur Dam</td>
<td>Drinking water supply (WASH)</td>
<td>7,435</td>
<td>n/a</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Integrated Watershed Management and Livelihood Improvement Project in Selected Sub-Catchments of Khanpur Dam</td>
<td>Revegetation, protection, agricultural improvements and recharge pits</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>65</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Community Stewardship and Water Replenishment for Drinking and Hygiene</td>
<td>Capacity building of local communities and constructed infrastructure to provide eight villages with improved drinking water</td>
<td>Drinking water supply (WASH)</td>
<td>2,880</td>
<td>n/a</td>
</tr>
<tr>
<td>Palestine, State of</td>
<td>Household greywater treatment in the Gaza Strip</td>
<td>Greywater treatment and reuse for irrigation</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>19</td>
</tr>
<tr>
<td>Palestine, State of</td>
<td>Empowering Sustainable Communities</td>
<td>Installation of desalination plant and distribution network in the Al Maghazi Refugee Camp in Gaza</td>
<td>Drinking water supply (WASH)</td>
<td>163,028</td>
<td>n/a</td>
</tr>
<tr>
<td>Panama</td>
<td>Tropical Rainforest Conservation, Reforestation and Agroforestry in the Panama Canal Watershed</td>
<td>Forest conservation/protection, active restoration, agroforestry and reforestation</td>
<td>Ecosystem protection/restoration and conservation agriculture</td>
<td>14</td>
<td>410</td>
</tr>
<tr>
<td>Paraguay</td>
<td>Improving Aquifer Recharge in the Biosphere Reserve of Mbaracayú Forest</td>
<td>Improved agricultural practices</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>244</td>
</tr>
<tr>
<td>Peru, Argentina</td>
<td>Oxapampa Ashánica Yanesha (RBOAY) Biosphere Reserve, Central Forest</td>
<td>Native forest conservation activities</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>2,049</td>
</tr>
<tr>
<td>Philippines</td>
<td>Ilagan Watershed Conservation Project in Isabela</td>
<td>Implementation of improved agricultural practices: cropland/farmland management</td>
<td>Conservation agriculture</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>Philippines</td>
<td>Agos - Habitat Rebuild Water Project</td>
<td>Rebuilding of water systems of seven (7) project sites (covering several barangays from adjacent provinces) destroyed by Bohol Earthquake in 2013.</td>
<td>Drinking water supply (WASH)</td>
<td>42,550</td>
<td>n/a</td>
</tr>
<tr>
<td>Philippines</td>
<td>AGOS Hydraulic Ram Pump Project</td>
<td>Provided poor upland communities with accessible and reliable community water systems using hydraulic ram pumps and ferrocement storage tanks. These benefits are metered.</td>
<td>Drinking water supply (WASH)</td>
<td>105,163</td>
<td>n/a</td>
</tr>
<tr>
<td>Philippines</td>
<td>Sarangani and Sultan Kudarat Community Water Access Project</td>
<td>Improved access to potable water & sanitation through the construction of spring boxes and rainwater harvesting</td>
<td>Drinking water supply (WASH)</td>
<td>11,720</td>
<td>n/a</td>
</tr>
<tr>
<td>Philippines</td>
<td>Rainwater Harvesting for Barangays San Fernando and Dumayog, Del Carmen, Surigao del Norte</td>
<td>Installation of a Rainwater Harvesting Facility and the rehabilitation / improvement of a creek-based water source towards operationalization of a Level II Potable Water System in each of the two barangays.</td>
<td>Drinking water supply (WASH)</td>
<td>1,173</td>
<td>n/a</td>
</tr>
<tr>
<td>Philippines</td>
<td>AGOS Gravity-Fed Water Access</td>
<td>PPRM and CCFPI jointly facilitated the project for the construction of spring development gravity-fed water systems in five rural communities in the provinces of Aklan, Camarines Norte, Camarines Sur, Eastern Samar, and Nueva Ecija</td>
<td>Drinking water supply (WASH)</td>
<td>17,095</td>
<td>n/a</td>
</tr>
</tbody>
</table>

2. A megaliter (ML) is one million (1,000,000) litres.

Classified - Confidential
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Activity Type</th>
<th>Benefits Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>Project aims to augment community-based organizations' (CBOs) capability to provide water in unserved areas not covered by current system.</td>
<td>Drinking water supply (WASH)</td>
<td>21,506 n/a 487</td>
</tr>
<tr>
<td>Philippines</td>
<td>Provide community water system for individuals (including farmers), a school and an army detachment in Sitio May-ibay Brgy. Aposkahoy, Claveria, Misamis Oriental.</td>
<td>Drinking water supply (WASH)</td>
<td>1,000 n/a 0</td>
</tr>
<tr>
<td>Philippines</td>
<td>WASH installation for potable water for students and teachers of Little Red Schoolhouses.</td>
<td>Drinking water supply (WASH)</td>
<td>6,246 n/a 5</td>
</tr>
<tr>
<td>Russia</td>
<td>Restoration of the natural flooding regime of Lake Sazanie and nearby wetlands.</td>
<td>Ecosystem protection/restoration</td>
<td>n/a 156 2,908</td>
</tr>
<tr>
<td>Russia</td>
<td>Restoration of the natural hydrologic regime of Lake Zarpornoye.</td>
<td>Ecosystem protection/restoration</td>
<td>n/a 38 319</td>
</tr>
<tr>
<td>Rwanda</td>
<td>Extended the Gahanga, Masaka and Nyarumu water supply system to provide safe drinking water.</td>
<td>Drinking water supply (WASH)</td>
<td>31,355 n/a 81</td>
</tr>
<tr>
<td>Rwanda</td>
<td>Construction and rehabilitation of wells, latrines and rainwater harvesting installations to provide full access to drinking water and sanitation in Northern and Eastern province.</td>
<td>Drinking water supply (WASH)</td>
<td>52,742 n/a 87</td>
</tr>
<tr>
<td>Rwanda</td>
<td>Global Grassroots trained, launched and monitored twelve grassroots teams of women in Rwanda. Nine of these teams initiated their own water enterprises and now provide clean and close water access to many community members.</td>
<td>Drinking water supply (WASH)</td>
<td>31,542 n/a 1</td>
</tr>
<tr>
<td>Senegal</td>
<td>Provided full access to water through installation and rehabilitation of water access infrastructure in villages.</td>
<td>Drinking water supply (WASH)</td>
<td>11,100 n/a 17</td>
</tr>
<tr>
<td>Serbia</td>
<td>Oxbow lake restoration in the Mura-Drava-Danube Biosphere Reserve (Široki Rit).</td>
<td>Oxbow restoration</td>
<td>Ecosystem protection/restoration 53 145</td>
</tr>
<tr>
<td>Serbia</td>
<td>Sarkanj Pond: wetland restoration.</td>
<td>Ecosystem protection/restoration</td>
<td>n/a 26 260</td>
</tr>
<tr>
<td>Somaliland</td>
<td>Full water access by connecting six boreholes to the distribution network and expanding the network to unserved areas, in coordination with the Burco Water Agency.</td>
<td>Drinking water supply (WASH)</td>
<td>174,000 n/a 1,046</td>
</tr>
<tr>
<td>South Africa</td>
<td>The installation of silt traps, swales and small ponds.</td>
<td>Ecosystem protection/restoration</td>
<td>n/a 761 124</td>
</tr>
<tr>
<td>South Africa</td>
<td>Regenerative agricultural techniques, such as biochar application and cover crop planting.</td>
<td>Conservation agriculture</td>
<td>n/a 82 0</td>
</tr>
<tr>
<td>South Africa</td>
<td>Reforestation/revegetation through planting of spekboom.</td>
<td>Ecosystem protection/restoration</td>
<td>n/a 53 1</td>
</tr>
<tr>
<td>South Africa</td>
<td>Removal of invasive species.</td>
<td>Ecosystem protection/restoration</td>
<td>n/a 387 456</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Title</th>
<th>Description</th>
<th>Benefit</th>
<th>Category</th>
<th>Volume</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Korea</td>
<td>Water Replenishment & Sustainability in Gwandong Village</td>
<td>Reservoir restoration and treatment wetland construction</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>37</td>
<td>123</td>
</tr>
<tr>
<td>South Korea</td>
<td>River Restoration in Jinnye-Myeon Village</td>
<td>Reservoir restoration and constructed treatment wetland</td>
<td>Water quality improvement</td>
<td>7,500</td>
<td>n/a</td>
<td>267</td>
</tr>
<tr>
<td>Spain</td>
<td>Replenishing Upper Guadiana Aquifers: “Misión Posible”</td>
<td>Irrigation water management to reduce withdrawals in an aquifer and restore natural ecosystem</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>5,163</td>
<td>300</td>
</tr>
<tr>
<td>Spain</td>
<td>Tancat de la Lapa</td>
<td>Restoration of constructed wetland and improvement of the biodiversity of the natural area</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>20</td>
<td>1,436</td>
</tr>
<tr>
<td>Spain</td>
<td>ECODES Planting Water</td>
<td>Land management to restore forest and grassland habitat and protect groundwater recharge</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>1,234</td>
<td>629</td>
</tr>
<tr>
<td>Spain</td>
<td>Citrus Farmers Water Savers</td>
<td>Irrigation system improvements (drip irrigation)</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>537</td>
<td>506</td>
</tr>
<tr>
<td>Spain</td>
<td>Misión Posible: Desafío Guadalquivir project</td>
<td>Efficient irrigation by citrus farmers and wetland restoration</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>611</td>
<td>527</td>
</tr>
<tr>
<td>Spain</td>
<td>Wet Lagoon Conservation Barcelona</td>
<td>Wastewater reuse for wetland conservation</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
<td>121</td>
</tr>
<tr>
<td>Spain, Portugal</td>
<td>Restoration Project Guadiana River Basin</td>
<td>Reforestation of areas closed to Guadiana river to prevent run-off and sedimentation. Improvement of biodiversity; Reforestation of agricultural crop fields (Phase 2)</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>195</td>
<td>37</td>
</tr>
<tr>
<td>Spain/GB</td>
<td>Donana Berries</td>
<td>Engaging with berry farmers to improve irrigation efficiency through adoption of new technologies and implementation of best practice techniques</td>
<td>Conservation agriculture</td>
<td>n/a</td>
<td>499</td>
<td>225</td>
</tr>
<tr>
<td>Swaziland</td>
<td>Water for a Generation</td>
<td>Irrigation water supply for vegetable cultivation</td>
<td>Alternative water sources</td>
<td>n/a</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Swaziland</td>
<td>Water for a Generation</td>
<td>Full water access through the construction and rehabilitation of 75 water points.</td>
<td>Drinking water supply (WASH)</td>
<td>n/a</td>
<td>13,140</td>
<td>75</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Ensuring Equal Access to Safe Drinking Water for Remote Villages in Khatlon District</td>
<td>New water supply system from a spring for the villages of Chulduchtaron, Pakhmdara and Navodod</td>
<td>Drinking water supply (WASH)</td>
<td>1,125</td>
<td>n/a</td>
<td>6</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Water Access for Murghab villages</td>
<td>Empowering remote communities to access and manage improved drinking water supply for the district of Murghab. 20 drinking wells installed in villages. Water User Groups were also established to manage this new resource.</td>
<td>Drinking water supply (WASH)</td>
<td>3,718</td>
<td>n/a</td>
<td>74</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Water Access for Chorbog Village of Hamadoni District</td>
<td>Establishment of transparent and accountable water management at the community Level; Installed infrastructure to establish a drinking water supply system</td>
<td>Drinking water supply (WASH)</td>
<td>1,243</td>
<td>n/a</td>
<td>6</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Improving Access to Water in Mweteni Village</td>
<td>This project provided access to safe sustainable drinking water through a gravity-fed water supply scheme in Mweteni village and a rainwater harvesting unit at Mturo Primary School.</td>
<td>Drinking water supply (WASH)</td>
<td>2,000</td>
<td>n/a</td>
<td>11</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Mlalakua River Restoration Project</td>
<td>Construction of Fecal Sludge Treatment Plant</td>
<td>Water quality improvement (WASH)</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Thailand</td>
<td>Klong Yan Watershed Resource Conservation and Rehabilitation Network</td>
<td>Enhancing the capability of community organization and conservation of forest land</td>
<td>Ecosystem protection/restoration</td>
<td>5,120</td>
<td>70</td>
<td>4,289</td>
</tr>
</tbody>
</table>

2. A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Title</th>
<th>Description</th>
<th>Outcome Area</th>
<th>Volumetric Water Benefit</th>
<th>Hydrologic Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thailand</td>
<td>Klong Van Watershed Resource Conservation and Rehabilitation Network</td>
<td>Enhancing the capability of community organization, construction of check dams and vegetation planting.</td>
<td>Enhance infiltration</td>
<td>5,330</td>
<td>32</td>
</tr>
<tr>
<td>Thailand</td>
<td>Village That Learns and Earns</td>
<td>Construction of stone check dams (Mae Tarn Noi, Lumpang)</td>
<td>Water quality improvement</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Thailand</td>
<td>Village That Learns and Earns</td>
<td>Installed Monkey Cheek Ponds and canals, sediment control and management (Limthong)</td>
<td>Water quality improvement</td>
<td>3,350</td>
<td>174</td>
</tr>
<tr>
<td>Thailand</td>
<td>Rangsit Agricultural Area, Pathum Thani Province, Thailand</td>
<td>Development of catchment area through rehabilitation of canals, and construction of clarifiers and water gates to enhance water supply for irrigation and peak flood removal in Rangsit</td>
<td>Alternative water sources</td>
<td>706</td>
<td>1,923</td>
</tr>
<tr>
<td>Thailand</td>
<td>Klong Van Watershed Resource Conservation and Rehabilitation Network</td>
<td>Enhancing the capability of community organization and mountain water supply systems</td>
<td>Drinking water supply (WASH)</td>
<td>5,604</td>
<td>38</td>
</tr>
<tr>
<td>Thailand</td>
<td>Village that Learns and Earns</td>
<td>Construction of water supply system in Limthong, Mae Tarn Noi</td>
<td>Water quality improvement (WASH)</td>
<td>585</td>
<td>374</td>
</tr>
<tr>
<td>Tunisia</td>
<td>RAIN Tunisia (UNDP)</td>
<td>Support to construction of water treatment facilities and distribution networks in rural communities as well as measures to create community-based water governance, management and maintenance.</td>
<td>Water quality improvement (WASH)</td>
<td>18,292</td>
<td>n/a</td>
</tr>
<tr>
<td>Turkey</td>
<td>Life Plus Environment Program</td>
<td>Implemented direct seeding and conservation tillage and installed wind breaks</td>
<td>Conservation agriculture</td>
<td>n/a</td>
<td>2,950</td>
</tr>
<tr>
<td>Tunisia</td>
<td>RAIN Tunisia (UNDP)</td>
<td>Demonstration of night-time sprinkler irrigation</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>1,500</td>
</tr>
<tr>
<td>Turkey</td>
<td>Adapting Irrigated Agriculture to Future: Night Irrigation at Harran Plain</td>
<td>Rain barrel distribution for community household and school/business use</td>
<td>Alternative water sources</td>
<td>87,677</td>
<td>n/a</td>
</tr>
<tr>
<td>U.S.A</td>
<td>Coca-Cola Rain Gardens</td>
<td>Construction of rain gardens in the United States</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>U.S.A</td>
<td>North America Rain Barrel Donation Program</td>
<td>Converting 77 acres of flood irrigation to drip irrigation at Squaw Peak Ranch</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>31</td>
</tr>
<tr>
<td>U.S.A</td>
<td>Verde River Program</td>
<td>In-stream flow restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>U.S.A. (AZ)</td>
<td>West Clear Creek Piping and Re-Watering Project</td>
<td>In-stream flow restoration, irrigation ditch improvements</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>U.S.A. (AZ)</td>
<td>Squaw Peak Ranch in Camp Verde, Arizona</td>
<td>Convert 77 acres of flood irrigation to drip irrigation at Squaw Peak Ranch</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>31</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>Sacramento River Riparian Habitat Restoration at La Barranca</td>
<td>Riparian habitat restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>58</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>Indian Valley High Mountain Meadow Restoration</td>
<td>Re-wetting high mountain meadows through hydrologic restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>202</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>Invasive Species Removal in Angeles National Forest, California</td>
<td>Invasive species removal</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>81</td>
</tr>
</tbody>
</table>

2. A megaliter (ML) is one million (1,000,000) litres.

Classified - Confidential
<table>
<thead>
<tr>
<th>Country (State)</th>
<th>Project Name</th>
<th>Description</th>
<th>Benefit</th>
<th>Category</th>
<th>Cost (K$)</th>
<th>Volume (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A. (CA)</td>
<td>Laguna Irrigation District Groundwater Recharge Project</td>
<td>Development of a groundwater recharge site</td>
<td>Enhance infiltration</td>
<td>n/a</td>
<td>21</td>
<td>2,606</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>Less Water, Same Shower</td>
<td>Replacing existing showerheads with low flow models</td>
<td>Water efficiency</td>
<td>11,358</td>
<td>n/a</td>
<td>102</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>Arundo Removal in Angeles National Forest, California</td>
<td>Invasive species removal</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>8</td>
<td>493</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>Rehabilitation of Potable Water Supply Pipeline</td>
<td>Replacement of leaking potable water pipelines</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>247</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>King Fire Reforestation</td>
<td>Reforestation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>492</td>
<td>329</td>
</tr>
<tr>
<td>U.S.A. (CA)</td>
<td>French and Elliot Meadow Restoration</td>
<td>Meadow restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>U.S.A. (CO)</td>
<td>Trail Creek Restoration, Colorado</td>
<td>Construction of sediment detention basins and rehabilitation of alluvial fans</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
<td>26</td>
</tr>
<tr>
<td>U.S.A. (CO)</td>
<td>South Platte River Sustainable Irrigation</td>
<td>Sustainable Irrigation in the Lower South Platte River Basin</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>153</td>
</tr>
<tr>
<td>U.S.A. (CO)</td>
<td>Upper Fraser Tributary Project</td>
<td>Instream flow restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>316</td>
</tr>
<tr>
<td>U.S.A. (CO)</td>
<td>15-Mile Reach Flow Restoration Project</td>
<td>In-stream flow restoration through an innovative purchasing agreement</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>97</td>
</tr>
<tr>
<td>U.S.A. (FL)</td>
<td>Smart Irrigation in Apalachicola, Florida</td>
<td>Irrigation emitter retrofits and variable rate irrigation</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>105</td>
</tr>
<tr>
<td>U.S.A. (FL)</td>
<td>Longleaf Pine Restoration Project on the Apalachicola National Forest</td>
<td>Reforestation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>223</td>
<td>111</td>
</tr>
<tr>
<td>U.S.A. (FL)</td>
<td>Corkscrew Swamp Marsh Restoration</td>
<td>Invasive species removal</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>U.S.A. (FL)</td>
<td>Reforestation in the Lower St. Johns Watershed, Florida</td>
<td>Reforestation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>103</td>
<td>58</td>
</tr>
<tr>
<td>U.S.A. (GA)</td>
<td>Dawson Forest Acquisition</td>
<td>Conservation of forest land</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>190</td>
<td>30</td>
</tr>
<tr>
<td>U.S.A. (GA)</td>
<td>Boyles Island Acquisition (Georgia for Generations)</td>
<td>Conservation of Boyles Island</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>U.S.A. (GA)</td>
<td>Kathryn Johnston Memorial Park Stormwater Management</td>
<td>Stormwater management</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
<td>18</td>
</tr>
<tr>
<td>U.S.A. (GA)</td>
<td>Etowah River Watershed Conservation Partnership</td>
<td>Floodplain restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
U.S.A. (GA)	Etowah River Watershed Conservation Partnership	Riparian buffer (Raccoon Creek)	Ecosystem protection/restoration	n/a	2	0
U.S.A. (GA)	Etowah River Watershed Conservation Partnership	Stormwater management (tributary ditch improvements)	Water quality improvement	n/a	n/a	0
U.S.A. (GA, AL)	Land Protection through Conservation Easements	Land protection and conservation	Ecosystem protection/restoration	n/a	1,756	3,404
U.S.A. (IA)	Missouri River Basin Wetland Restoration	Wetland restoration	Ecosystem protection/restoration	n/a	6	3
U.S.A. (IA)	Mississippi River Basin Treatment Wetlands	Construction of treatment wetland (in the Cedar River basin Iowa)	Water quality improvement	n/a	587	654
U.S.A. (IA)	Boone River Water Savings Project	Lake restoration	Ecosystem protection/restoration	n/a	n/a	3
U.S.A. (IA)	Boone River Water Savings Project	Cover crops	Conservation agriculture	n/a	n/a	15
U.S.A. (ID)	Jesse Creek Restoration	In-stream flow restoration	Ecosystem protection/restoration	n/a	n/a	267
U.S.A. (IL)	Midewin National Tallgrass Prairie, Illinois	Tile drain removal	Ecosystem protection/restoration	n/a	95	292
U.S.A. (IL)	Mississippi River Basin Treatment Wetlands	Construction of treatment wetland (in the Money Creek watershed, Illinois)	Water quality improvement	n/a	n/a	19
U.S.A. (IN)	Big Pine Creek Watershed Cover Crops	Cover crops	Conservation agriculture	n/a	495	155
U.S.A (LA)	Redirecting Freshwater to a Historic Cypress Wetland Forest	Freshwater diversion to restore healthy bald cypress forest	Ecosystem protection/restoration	n/a	1,619	448
U.S.A (LA)	Floodplain Reconnection and Wetland Restoration - Mollicy Farms, Louisiana	Floodplain reconnection and wetland restoration	Ecosystem protection/restoration	n/a	5,180	6,158
U.S.A (LA)	Floodplain Reconnection and Wetland Restoration - Mollicy Farms, Louisiana	Mollicy Bayou floodplain reconnection	Ecosystem protection/restoration	n/a	257	495
U.S.A (MD)	Bloede Dam Removal	Dam removal	Ecosystem protection/restoration	n/a	n/a	216
U.S.A (MI)	Paw Paw River Watershed Restoration	Implement best management practices for cropland in the Paw Paw River watershed, including: 1) conservation tillage practices, 2) conservation cover, and 3) filter strips	Conservation agriculture	n/a	variable	93
U.S.A (MI)	Stream Crossing Improvement on North Branch White River in Huron-Manistee National Forest, Michigan	In-stream flow restoration through culvert removal	Ecosystem protection/restoration	n/a	n/a	150
U.S.A (MI)	Stream Crossing Improvement on Brayton Creek in Huron-Manistee National Forest, Michigan	In-stream flow restoration through culvert removal	Ecosystem protection/restoration	n/a	n/a	226

2. A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country (State)</th>
<th>Project Title</th>
<th>Project Description</th>
<th>Water or Ecosystem Benefit</th>
<th>Implementation</th>
<th>Evaluation</th>
<th>Funding (in USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A (MI)</td>
<td>Saginaw Bay Watershed Drainage Water Management</td>
<td>Drainage water management</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
<td>$15,000</td>
</tr>
<tr>
<td>U.S.A (MN)</td>
<td>Mississippi River Basin Treatment Wetlands</td>
<td>Construction of treatment wetland (in the Root River basin, Minnesota)</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
<td>$53,000</td>
</tr>
<tr>
<td>U.S.A (MT)</td>
<td>Prickly Pear Creek Re-watering Project</td>
<td>In-stream flow restoration through water leasing and exchange agreements</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>U.S.A (MT)</td>
<td>Improving Fort Shaw Irrigation District Water Efficiency to Improve Sun River Flow</td>
<td>Irrigation system improvements</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>$3,512,000</td>
</tr>
<tr>
<td>U.S.A (NE)</td>
<td>Western Nebraska Irrigation Project</td>
<td>Variable rate irrigation and advanced irrigation scheduling</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>$2,573,074</td>
</tr>
<tr>
<td>U.S.A (NM)</td>
<td>Placer Creek Restoration, Carson National Forest, New Mexico</td>
<td>Rewetting high mountain meadows through hydrological restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>8</td>
<td>$33,000</td>
</tr>
<tr>
<td>U.S.A (NM)</td>
<td>Comanche Creek Fen Wetland Restoration Project</td>
<td>Re-wetting high mountain meadows through hydrological restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>107</td>
<td>$207,000</td>
</tr>
<tr>
<td>U.S.A (NM)</td>
<td>Comanche Creek Fen Wetland Restoration</td>
<td>Stream and wetland restoration to reconnect the stream to the historic floodplain</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>20</td>
<td>$60,000</td>
</tr>
<tr>
<td>U.S.A (OR)</td>
<td>Pudding Ponds Willamette River Restoration</td>
<td>Restoring natural flow to a historic river channel</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>$1,936,000</td>
</tr>
<tr>
<td>U.S.A (PA)</td>
<td>Big Spring Watershed Protection</td>
<td>Leak detection and repair of municipal water distribution and piping system</td>
<td>Water efficiency</td>
<td>n/a</td>
<td>n/a</td>
<td>$637,000</td>
</tr>
<tr>
<td>U.S.A (PA)</td>
<td>Clearwater Community Watershed Partnership: the Scotia Barrens Conservation Project’s Halfmoon Wildlife Corridor</td>
<td>Land protection and conservation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>U.S.A (TN)</td>
<td>Sewanee Treatment Wetland</td>
<td>Treatment wetland</td>
<td>Water quality improvement</td>
<td>n/a</td>
<td>n/a</td>
<td>$25,000</td>
</tr>
<tr>
<td>U.S.A (TX)</td>
<td>Brazos Watershed - Nash Prairie Stewardship and Seed Increase Project</td>
<td>Restoring native prairie via removal of invasive plant species and revegetation with native grassland species</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>$17,000</td>
</tr>
<tr>
<td>U.S.A (TX)</td>
<td>South Texas Thornscrub Restoration</td>
<td>Restoration of native Texas thornscrub forests</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td>U.S.A (TX)</td>
<td>Tallgrass Prairie Watershed Restoration in North Texas</td>
<td>Conservation of native prairie land</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>53</td>
<td>42</td>
</tr>
<tr>
<td>U.S.A (TX)</td>
<td>Tallgrass Prairie Watershed Restoration in North Texas</td>
<td>Restoring tallgrass prairie via removal of invasive plant species and revegetation with native grassland species</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>471</td>
<td>138</td>
</tr>
<tr>
<td>U.S.A (TX)</td>
<td>TCC-WWF Partnership: Rio Grande / Rio Bravo Basin</td>
<td>Rio Grande (Big Bend, Texas) - Reestablishment of channel morphology and floodplain connectivity</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>variable</td>
<td>$1,532,000</td>
</tr>
<tr>
<td>U.S.A (UT)</td>
<td>Chalk Creek Flow Restoration</td>
<td>In-stream flow restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>$5,000</td>
</tr>
</tbody>
</table>

2. A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Benefit Type</th>
<th>Sector</th>
<th>Cost (USD)</th>
<th>Volumes (ML)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A. (UT)</td>
<td>Bear and Weber River Flow Restoration</td>
<td>In-stream flow restoration through water leasing agreements</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>704</td>
</tr>
<tr>
<td>U.S.A. (WA)</td>
<td>Upper Methow River Restoration</td>
<td>Restoring groundwater storage through beaver reintroduction</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>13</td>
</tr>
<tr>
<td>Uganda</td>
<td>Northern Uganda Watersprings Initiative</td>
<td>Constructed 18 deep wells</td>
<td>Drinking water supply (WASH)</td>
<td>35,090</td>
<td>n/a</td>
<td>104</td>
</tr>
<tr>
<td>Uganda</td>
<td>Bwaise Urban Water Access Program</td>
<td>Full access to safe, affordable water through the rehabilitation of the water distribution network.</td>
<td>Drinking water supply (WASH)</td>
<td>15,616</td>
<td>n/a</td>
<td>70</td>
</tr>
<tr>
<td>Uganda</td>
<td>Uganda (GIZ): Improved Community Livelihoods and Sustainable Water Management in the River Rwizi Catchment</td>
<td>Provided access to a piped water supply system</td>
<td>Drinking water supply (WASH)</td>
<td>2,517</td>
<td>n/a</td>
<td>2</td>
</tr>
<tr>
<td>Uganda</td>
<td>Safe Water for the Palabek Refugee Settlement</td>
<td>Boreholes</td>
<td>Drinking water supply (WASH)</td>
<td>12,137</td>
<td>n/a</td>
<td>89</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Restoration of Bienkovi wetlands within National Nature Park “Biloberezhzhya Svyatoslava” (Kinburn Spit)</td>
<td>Wetland restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>400</td>
<td>1,928</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Enhancement of Water Exchange in the Kardashhynta Wetland via Hydrology Restoration and River Reconnection</td>
<td>Channel clearing to restore natural hydrology</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>36</td>
<td>720</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Restoration of degraded peatlands at Nizhyn Rayon</td>
<td>Peatland restoration</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>800</td>
<td>9,072</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Water replenishment of the Tyilhul River to Save the Tyilhul Lyman</td>
<td>Increase natural spring flows to degraded estuary</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>538</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Water reservoir renovation to protect peatland water levels</td>
<td>Restoration of water reservoir systems to restore and maintain surface and groundwater levels, which in turn re-wet dried peatland</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>21</td>
<td>1,205</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Water replenishment of Lakes in Oleshy Sands Semi Desert</td>
<td>Restoration of lakes in sand dune environment</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>71</td>
<td>98</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Lake Beloye water resources management improvements</td>
<td>Improve water management and water quality of Lake Beloye</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>530</td>
<td>345</td>
</tr>
<tr>
<td>Uruguay</td>
<td>Sustainable Water Resources Management in Lunarejo Valley, Uruguay.</td>
<td>Reforestation, pasture conservation and restoration, and soil conservation</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>2,506</td>
<td>1,203</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>Water Use Efficiency in Agriculture and Water Saving Technologies at the Farm Level</td>
<td>Rehabilitation of water distribution systems including renovation of two 100 cubic meter, concrete, watertight water tanks, installation of pipelines and home connections and installation of water purification equipment.</td>
<td>Drinking water supply (WASH)</td>
<td>1,948</td>
<td>n/a</td>
<td>11</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>Improving Access to Drinking Water Supply for the Rural Communities in the Aral Sea Region</td>
<td>Watershed restoration/protection projects and water for productive use projects</td>
<td>Ecosystem protection/restoration</td>
<td>n/a</td>
<td>n/a</td>
<td>9,327</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Ecotourism Development and Sustainable Use of Tram Chim Wetlands</td>
<td>Piloting flood-based livelihoods in support of a water retention strategy for the Mekong Delta, Vietnam</td>
<td>Conservation agriculture</td>
<td>226</td>
<td>249</td>
<td>2,150</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.
<table>
<thead>
<tr>
<th>Vietnam</th>
<th>Clean Water for Communities</th>
<th>Improving access to safe piped water and provide household connections and meters for 1,000 households in poor communities in Hoa Vinh small town, Dong Hoa district, south of Tuy Hoa City and An Chan commune, Tuy An district, north of Tuy Hoa City, Phu Yen Province, central region of Vietnam.</th>
<th>Water quality improvement (WASH)</th>
<th>4,025</th>
<th>n/a</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam</td>
<td>Clean Water for Communities I</td>
<td>Access to clean water was provided to underserved poor communities in Thu Duc, Hoa Vang and Thuong Tin districts. Activities included: household connections by extending water pipes, water meters in Thu Duc district and Hoa Vang districts; drilling wells and a pump and filtration box in Thuong Tin district.</td>
<td>Water quality improvement (WASH)</td>
<td>3,048</td>
<td>n/a</td>
<td>156</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Clean water for communities II</td>
<td>Installed water filtration system for clean drinking water for secondary schools in Vietnam</td>
<td>Drinking water supply (WASH)</td>
<td>14,730</td>
<td>n/a</td>
<td>4</td>
</tr>
<tr>
<td>Vietnam</td>
<td>EKOCENTER VIETNAM</td>
<td>Built EKOCENTER to provide safe drinking water for communities, together with other priorities in women empowerment and plastic waste management</td>
<td>Drinking water supply (WASH)</td>
<td>6,093</td>
<td>n/a</td>
<td>8</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>3,844,753</td>
<td>464,239</td>
<td>273,740</td>
</tr>
</tbody>
</table>

1 Projects delivering volumetric water benefits against global TCCC replenish volume in 2019.
2 A megaliter (ML) is one million (1,000,000) litres.